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Basic Properties:
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An equilateral triangle is a triangle whose three
sides all have the same length. They are the only
regular polygon with three sides, and appear in a
variety of contexts, in both basic geometry and
more advanced topics such as complex number
geometry and geometric inequalities.

           

Identification
The most straight forward way to identify an
equilateral triangle is by comparing the side
lengths. If the three side lengths are equal, the
structure of the triangle is determined (a consequ-
ence of SSS congruence). However, this is not
always possible.
Another useful criterion is that the three angle of
an equilateral triangle are equal as well, and are

thus each 60 .  Since the angles opposite equal

sides are themselves equal, this means discovering

two equal angles of 60 .

Notably, the equilateral triangle is the unique
polygon for which the knowledge of only one side
length allows one to determine the full structure of
the polygon. For example, there are infintely many
quadrilaterals with equal side lengths (rhombus)
so we need to know at least one more property to
determine its full structure. In this way, the
equilateral triangle is in company with the circle
and the sphere whose full structure are determined
by supplying only the radius.
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Identification

Basic Properties:

Because the equilateral triangle is, in some sense,
the simplest polygon, many typically important
property are easily calculable. For instance, for an
equilateral triangle with side length a, we have the
following :

By. DHANANJAYA REDDY THANAKANTI
(Bangalore)
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 The altitude, median, angle bisector, and
perpendicular bisector for each side are all the same
single line.

 These 3 lines (one for each side) are also the lines
of symmetry of the triangle.

 All three of the lines mentioned above have the

same length of 
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3
.

2

a

 The area of an equilateral triangle is 
2 3

.
4

a

 The orthocenter, circumcenter, incenter, centroid
and nine-point center are all the same point. The
Euler line degenerates into a single point.

The circumradius of an equilateral triangle is 
3

.
3

a

Note that this is 
2

3
 the length of an altitude,

because each altitude is also a median of the
triangle.

 The inradius of an equilateral triangle is 
3

.
6

a

Note that the inradius is 
1

3
 the length of an altitude,

because each altitude is also a median of the

triangle. Also the inradius is 
1

2
 the length of a

circumradius.

It is also worth nothing that six congruent
equilateral triangles can be arranged to form a
regular hexagon, making several properties of
regular hexagons easily discoverable as well. For
example, the area of a regular hexagon with side

length a is simply 6. 
2 23 3 3

.
4 2

a a


Advanced Properties

Firstly, it is worth noting that the circumradius is
exactly twice the inradius, which is important as



m

m









Advanced Properties

2R r  according to Euler’s inequality. The

equilateral triangle provides the equality case, as it

does in more advanced cases such as the Erdos-
Mordell inequality.

If P is any point inside an equilateral triangle, the
sum of its distances from three sides is equal to the
length of an altitude of the triangle:

          

Equilateral Triangle
The equilateral triangle is also the only triangle
that can have both rational side lengths and angles
(when measured in degrees).

When inscribed in a unit square, the maximal

possible area of an equilateral triangle is 2 3 3,

occurring when the triangle is oriented at a 15

angle and has sides of length 6 2 :

                 

It is also worth noting that besides the equilateral
triangle in the above picture, there are three other

triangles with areas , ,X Y  and Z  (with Z the

largest): They satisfy the relation 2 2X Y Z 

X Y Z   .  in fact, X Y Z   is true of any

rectangle circumscribed about an equilateral
triangle, regardless of orientation.
Equilateral triangles are particularly useful in the
complex plane, as their vertices a, b, c satisfy the
relation

2 0,a b c   



Theorem:

Proof:
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Theorem:

Proof:
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where   is a primitive third root of unity, meaning
3 1   and 1.   In particular, this allows for an

easy way to determine the location of the final
vertex, given the locations of the remaining two.

Another property of the equilateral triangle is Van
Schooten’s theorem:

  If ABC is an equilateral triangle and M is a
point on the arc BC of the circumcircle of the
triangle ABC, then

.MA MB MC 
 Using the Ptolemy’s theorem on the cyclic

quadrilateral ABMC, we have

      MA BC MB AC MC AB    

or               MA MB MC 

1. Let ABC  and CDE  be equilateral triangles of

the same size, and 80BCD    between them.

Find the measure of BAD  in degrees.

               

(a) 40 (b) 60

(c) 30 (d) None of these

2. A triangle has a 60  angle. If two of its sides are 1

m long, how many different triangles can one draw
which fit these measurements?
(a) 1 (b) 2
(c) 3 (d) Infinitely many

3. A square and an equilateral triangle have the same

perimeter. If the area of the triangle is 16 3,  what

is the area of the square ?
(a) 16 (b) 36
(c) 40 (d) None of these

4. Given two distinct points A and B in the plane, how
many distinct points C are there on the same

plane such that ABC  is an equilateral triangle?

(a) 1 (b) 2
(c) 3 (d) infinitely many

5. There are 8 equilateral triangles each of which is 4
cm on a side. All of these triangles have been made
by bending copper wires. Now, you unbend the
wires and try to make squares with side length 1
cm: How many such squares can you make?
(a) 22 (b) 24 (c) 25 (d)26

6. In the below diagram, the side length of equilateral

triangle 

7. Points E and F are located on square ABCD so

that 



ABC  is 3.a   If D is the midpoint

of BC  and ADE  is also an equilateral triangle,

what is the area of ?ABE

      

(a) 
11 3

4
(b) 

7 3

2
(c) 

9 3

4
(d) 

13 3

2

BEF  is equilateral. What is the ratio of the

area of DEF  to that ?ABE

           

(a) 
4

3
(b) 

3

2
(c) 3 (d) 2

8. Show that there is no equilateral triangle in the
plane whose vertices have integer coordinates.

1.

2.

3.

4.

5.

6.

7.

8.

1. a 2. a 3. b 4. b 5. b1. 2. 3. 4. 5. 
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6. c 7. d6. 7. 

1.Sol: Consider isosceles 

2.Sol: Take 

In either of the cases the triangle will be an
equilateral one. Hence only 1 triangle .

3.Sol: Let a be the side of the triangle and b the side of

the square. We know that 

.ACD

60 80 140ACD    
Since

180 140
, 20

2
AC CD ADC DAC

  
      

It follows that 40 .  

60  as vertex angle. Other two angles

180 60
60 .

2

  
  

Take 60  as base angle. Vertex angle

 180 60 60 60 .     

3 4 .a b

Now, the area of the triangle is given by 
2 3

,
4

a
 so

2 2
23

16 3 16 64.
4 4

a a
a    

Hence 8.a 

We have:  
 3 8

3 8 4 6.
4

b b   

Finally, the area of the square is 26 36.

4.Sol:  We know AB is a fixed line. given that ABC  is

equilateral, that is we need to draw two intersecting
circles of radius of length AB at A, B as centers of
respective circles. Therefore there are two
intersecting points. That is two distincts points
are possible for the point ‘C’ .

5.Sol: We know length of the copper wire is 8 times
the perimeter of equilateral triangle. That is

8(3 4)cm .

Now, we have length of copper wire is 96 cm.
We know perimeter of a Square is 4(1) cm.

   total number of squares can be made using 96

cm copper wire is 
96

24 .

6.Sol: We know AD is altitude of equilateral triangle
with side 3

4



3 3

2
AD 

we also given ADE  is equilateral, that is AD =

AE  = 
3 3

2

now 90BAC CAE   

        BAE  is right angled triangle.

Hence area of 
1 9 3

2 4
ABE AE AB   

7.Sol: Since triangle BEF is equilateral, ,EA FC  and

EAB and FCB are SAS congruent. Thus, triangle
DEF is an isosceles right triangle. So we let

.DE x  Thus 2.EF EB FB x    If we go

angle chasing, we find out that 75 ,AEB    thus

15 .ABE    
6 2

sin15 .
4

AE

EB


    Thus

6 2
,

42

AE

x


  or 

 3 1
.

2

x
AE


  Thus

 3 1
,

2

x
AB


  and  

2

,
4

x
ABE   and

 
2

.
2

x
DEF   Thus the ratio of the area is (d) 2.

Method 2 : (Non - trig) :  Let the side length of ABCD

 be 1. Let 

1.Sol: 

2.Sol: 

3.Sol:

4.Sol: 

5.Sol: 

6.Sol:

7.Sol:

Method 2 :

.DE x  It suffices that 1 .AE x   Then

triangles ABE  and CBF  are congruent by ,HL

so CF AE  and .DE DF

We find that 2,BE EF x   and so, by the

Pythagorean Theorem, we have  
2 21 1 2 .x x  

Thus yields 2 2 2,x x   so 2 2 2 .x x  Thus, the

desired ratio of area is

2

2
2 2

1 1

2

x
x

x x
 

 
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Method 3 : BEF  is equilateral, so 60 ,EBF    and

EBA FBC    so they must each so they must

each be 15 .  Then let 1,BE EF FB    which

gives sin15EA    and cos15 .AB    The area of

ABE  is then 
1 1 1

sin15 cos15 sin 30 .
2 4 8

    

DEF  is an isosceles right triangle with

hypotenuse 1, so 
1

2
DE DF   and therefore

its area is 

8.Sol: Suppose that there is an equilateral triangle in
the plane whose vertices have integer coor-
dinates.
The determinant formula for area is rational, so if
the all three points are rational points, then the
area of the triangle is also rational.

On the other hand, the area of an equilateral triangle

with side length a is 

Method 3 : 8.Sol:

1 1 1 1
.

2 42 2

 
  

 
 The ratio of areas is

then 

1

4 2
1

8



2 3
,

4

a
 which is irrational

since 2a  is an integer and 3  is an irrational

number.

This is a contradiction.

Problem:
Suppose you have a white box with 60 white balls and a black box with 60 black balls ( Fig). You take 20 balls
from the white box, put them into the black box, and mix everything up thoroughly. Now you take 20 balls
(most likely some white, some black) from the black box and put them into the white box. In the end, which is
larger: the number of black balls in the white box or the number of white balls in the black box?

Problem:

Solution to the above problem will be published in the next month issue.
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1. If the focus of the parabola    
2

4y x   

always lies between the lines 1x y   and

3,x y   then

(a) 1 2    (b) 0 1   

(c) 0 2    (d) None of these

2. The tangents at two points P and Q on the parabola
2 4y x  intersect at .T  If ,SP ST  and SQ  are

equal to ,a b  an c respectively, where S is the

focus, then the roots of the equation
2 2 0ax bx c    are

(a) Real and equal (b) Real and unequal
(c) Complex numbers (d) Irrational

3. ABCD and EFGC are squares and the curve

4. In a square matrix A of order 3, ii i

y k x  passes through the origin D and the

points B and F. The ratio 
FG

BC
 is :

(a) 
5 1

2


(b) 

3 1

2



(c) 
5 1

4


(d) 

3 1

4



a m i   where

1,2,3i   and 'im s  are the slopes (in increasing

order of their absolute value) of the 3 normals

concurrent at the point  9, 6  to the parabola

2

5. Through the vertex O of a parabola 2

4 .y x  Rest all other entries of the matrix are

one. The value of det.(A) is equal to :

(a) 37 (b) 6 (c) 4 (d) 9

4 ,y x

chords OP and OQ are drawn at right angles to one
another. The locus of the middle point of PQ is

(a) 2 2 8y x  (b) 2 8y x 

(c) 2 2 8y x  (d) None of these

6. If the two parabolas  2
14y a x k   and

 2
24x a y k   always touch each other, 1k  and

2k  being variable parameters, then their point of

contact lies on the curve

(a) 2xy a (b) 22xy a

(c) 24xy a (d) None of these

7. If    

2 2

2
1

4 5

x y

f a f a
 

  represents an ellipse

with major axis as y-axis and f is a decreasing

function, such that   0, ,f x x R    then

complete set of values of a is :

(a)  ,1 (b)    , 1 5,   

(c)  1,4 (d)  1,5

8. The point of intersection of the tangents at the

point P on the ellipse 

1.

2.

3.

4.

5.

6.

7.

8.

2 2

2 2
1

x y

a b
   and its

CONICS
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corresponding point Q on the auxilary circle meet
on the line :

(a) /x a e (b) 0x 

(c) 0y  (d) None of these

9. The locus of mid-points of focal chords of the

ellipse 
2 2

2 2
1

x y

a b
   is

(a) 
2 2

2 2

x y ex

aa b
  (b) 

2 2

2 2

x y ex

aa b
 

(c) 2 2 2 2x y a b   (d) None of these

10. The maximum area of an isosceles triangle inscribed

in the ellipse 
2 2

2 2
1

x y

a b
   with its vertex at one end

of the major axis is

(a) 3ab (b) 
3 3

4
ab

(c) 
5 3

4
ab (d) None of these

11. A tangent to the ellipse 2 24 4x y   meets the

ellipse 2 22 6x y   at P and Q. The angle between

the tangent at P and Q of the ellipse 2 22 6x y 

is

(a) 
2


(b) 

3


(c) 

4


(d) 

6



12. The normal at a variable point P on an ellipse

2 2

2 2
1

x y

a b
   of eccentricity e meets the axes of the

ellipse in Q and R then the locus of the mid-point

of QR is a conic with an eccentricity 'e  such that :

(a) 'e  is independent of e(b) ' 1e 

(c) 'e e (d) ' 1 /e e

13. If normal at any point P to the ellipse 
2 2

2 2
1

x y

a b
 

 a b  meet the axes at M and N so that

2
,

3

PM

PN
  then the value of eccentricity is :

(a) 
1

2
(b) 

2

3

(c) 
1

3
(d) None of these

14. The area of the triangle formed by the line

0, 0x y x y     and any tangent to the

hyperbola 2 2 2x y a   is

(a) 22a (b) 24a

(c) 2a (d) None of these

15. A conic passes through the point (2,4) and is such
that the segment of any of its tangents at any point
contained between the co-ordinate is bisected at
the point of tangency. Then the foci of the conic
are:

(a) (2 2,0)  and ( 2 2,0)

(b) (2 2, 2 2)  and ( 2 2, 2 2) 

(c) (4, 4) and (-4, -4)

(d) (4 2, 4 2)  and ( 4 2, 4 2) 

16. With one focus of the hyperbola 
2 2

1
9 16

x y
   as

the centre, a circle is drawn which is tangent to the
hyperbola with no part of the circle being outside
the hyperbola. The radius of the circle is:
(a) Less than 2 (b) 2

(c) 
11

3
(d) None of these

17. If a ray of light incident along the line

 3 5 4 2 15,x y    gets reflected from the

hyperbola 
2 2

1
16 9

x y
   then its reflected ray goes

along the line

(a) 2 5 0x y   (b) 2 5 0y x  

(c) 

18

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

2 5 0y x   (d) None of these

Let  sec , tanP a b   and  sec , tan ,Q a b 

where ,
2


    be two points on the hyperbola
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19. All the chords of the hyperbola
2 2

19.

2 2

2 2
1.

x y

a b
   If  ,h k  is the point of intersection

of the normals at P and Q, then k is equal to

(a) 
2 2a b

a


(b) 

2 2a b

a

 
 
 

(c) 
2 2a b

b


(d) 

2 2a b

b

 
 
 

3 2 4 0x y x y    , subtending a right angle

at the origin pass through the fixed point
(a) (1,-2) (b) (-1,2)
(c) (1,2) (d) None of these

1. c 2. a 3. a 4. c 5. c
6. c 7. d 8. c 9. a 10. b
11. a 12. c 13. c 14. c 15. c
16. b 17. c 18. d 19. a

1. 2. 3. 4. 5.
6. 7. 8. 9. 10.
11. 12. 13. 14. 15.
16. 17. 18. 19.

1.Sol: The coordinates of the focus of the given

parabola are 

2.Sol: The tangents at the points 

 1, . 

            

Clearly, focus must lie to the opposite side of the

origin w.r.t. the line 1 0x y    and same side as

origin with respect to the line 3 0.x y    Hence,

0    and 2.  

 2
1 1, 2P t t  and

 2
2 2, 2Q t t  intersect at the point  1 2 1 2,T t t t t

         

Now, 2
11a SP t    and 2

21c SQ t  

    
2 22 2

1 2 1 21b ST t t t t    

      2 2 2 2
1 2 1 21t t t t   

        2 2
1 21 1t t ac   

  Roots of the equation 2 2 0ax bx c    are real

and equal.

3.Sol: 

1.Sol:

2.Sol:

3.Sol:

2
2 2 2 4

4

k
y k x y x

 
    

 

Given that B, F are on the curve

i.e., 

2 2 2 2
2 2
1 1 2 2, , ,

4 2 4 2

k k k k
B t t F t t
   
   
   

                

also given that ABCD, EFGC are square

i.e., CD BC  and CG FG

  
2 2

2
1 1 1 2

4 2

k k
t t t    and

 
2 2

2 2
2 2 1

2 4

k k
t t t 

i.e., 2 2
2 2 2 22 4 2 4 0t t t t     

 2 1 5t  



5.Sol:

7.Sol: 

8.Sol:

6.Sol:
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2

1

1 5

2

tFG

BC t


 

4.Sol: Equation of normal at  2 , 2t t

i.e., 32y tx t t   

         

Given that, 3 normals are concurrent at  9, 6

i.e., 3 7 6 0t t  

    1 2 3 0t t t   

 1,2 3t  

now 11 1 1 1 1 0;a m     

22 2 2 2 2 0;a m     

33 3 3 3 3 6;a m    



18

4.Sol:

5.Sol:

6.Sol:

7.Sol: 

8.Sol:

0 1 1

1 0 1 4

1 1 6

A   

 Given parabola is 2 4y x              (1)

 1a 

Let  2
1 1, 2P t t  and  2

2 2, 2Q t t

Slope of 
1

2
11

2 2t
OP

tt
   and slope of 

2

2
OQ

t


Given that OP is right angled to OQ

i.e., ,OP OQ    
1 2

4
1

t t
   or 1 2 4t t              (2)

Let  ,R    be the middle point of PQ, then

2 2
1 2

2

t t



           (3)

1 2t t             (4)

From (4), 2 2 2
1 2 1 22 2 8t t t t     

[From (2) and (3)]

Hence locus of  ,R    is 2 2 8.y x 

 Given parabolas are  2
14y a x k            (1)

and  2
24x a y k            (2)

Equation of tangent to (1) at  ,   is

 12y a x k   

  12 2ax y a k              (3)

Equation of tangent to (2) at  ,   is

 22x a y k   

  22 2x ay a k              (4)

Since (3) and (4) are identical, comparing
coefficients of x and y in (3) and (4), we get

2

2

a

a






  24 .a   i.e., the point of contact  , 

lies on the curve 24 .xy a

We have    20 4 5f a f a  

24 5a a 

   5 1 0a a  

  1,5a 

 Equation of tangent at P is

cos sin
1

x y

a b

 
            (1)

                 

Equation of tangent at Q is

cos sin
1

x y

a a

 
                                       (2)
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9.Sol: Let 

From (1) (2)


1 1

sin 0y
b a


 

  
 

 0y 

  Point of intersection lie on line 0y 

 ,h k  be the mid point of a focal chord.

Then its equation is 1T S

i.e.,
2 2

2 2 2 2
1 1

xh ky h k

a b a b
    

Since it passes through  ,0ae



2 2

2 2 2

hae h k

a a b
 

  Locus of  ,h k  is 
2 2

2 2

x y xe

aa b
 

10.Sol: The given ellipse is 
2 2

2 2
1.

x y

a b
 

      

 Let  cos , sinA a b  

Then,  cos , sinC a b  

 Area of 
1

2
ABC AC BD AD BD     

     sin cosb a a  

    
1

2sin sin 2
2
ab   

Now,  
1

2cos 2cos 2 0
2

d
ab

d
 




  

 2cos2 cos 2cos cos 1 0       

   2cos 1 cos 1 0   


1

cos
2




  or cos 1 

If 0, 0,     which is not possible.

 2 / 3. 

max

3 3

4
ab 

11.Sol:  We can write the ellipse 2 24 4x y   as

2
2 1

4

x
y            (1)

Equation of any tangent to the ellipse (1) can be

written  as cos sin 1
2

x
y             (2)

          

9.Sol:

10.Sol:

11.Sol:

Equation of the second ellipse can be written as

2 2

1
6 3

x y
            (3)

Suppose, the tangents at P and Q meet in  , .A h k

Equation of the chord of contact of the tangents

through  ,A h k  is

1
6 3

hx ky
            (4)

Since (4) and (2) represent the same line



/ 6 / 3 1

cos sin 1

2

h k

 
 

 3cosh   and 3sin .k 

Thus, coordinates of A are  3cos ,3sin . 

The joint equation of the tangents at A is given by
2

1T SS

i.e., 

2 2 2 2 2

1 1 1
6 3 6 3 6 3

hx ky x y h k   
         

    
  (5)

Let a  coefficient of  2x  in (5)

    

2 2 3 21 1
1

36 6 6 3 18 6

h h k k  
      

 



15.Sol: 
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and, b  coefficient of 2y  in (5)

2 2 3 21 1
1 .

9 3 6 3 18 3

k h k h  
      

 

We have,  2 21 1 1

18 6 3
a b h k


    

 2 21 1
9cos 9sin

18 2
 


  

 
1 1

9 0.
18 2


  

Thus, (5) represents two lines which are at right
angles to each other.

12.Sol: Let  ,h k  be the variable point P on ellipse

i.e., 
2 2

2 sin
2 cos ,2

a e
h ae k

b


 




          

  

2 2

2 222
2

4 4
1

h k

eae
a
b

 
 
 
 

2 2

2 2 42
1

22

x y

a eae
b

 
  
  
  

  
2 4 4 4

2

2
1 '

4 4

a e a e
e

b
 

   22 2 1 'b a e 

 'e e

13.Sol:    
22 2 2 2 2 2cos 1 sinPM a e b   

                      2 2 21 cosb e  

       
2

22 2 2 2 2 2

2

sin
cosPN a b a e

b


  

      
4

2 2

2
1 cos

a
e

b
 

          

2 4

4

4

9

PM b

PN a

 
  

 

2
2

2

2
1

3

b
e

a
   

1

3
e 

14.Sol: Any tangent at  sec , tanP a b   to the

hyperbola 2 2 2x y a 

sec tanx y a             (1)

Given lines are 0x y               (2)

and 0x y               (3)

Slove (1) and (2), (2) and (3), (3) and (1), we get
vertices of the triangle as

, ,
sec tan sec tan

a a

   

 
 

  

,
sec tan sec tan

a a 
 

     
 and (0, 0)

  Area of the triangle 1 2 2 1

1

2
x y x y 

2

2 2 2 2

1 1

2 sec tan sec tan

a

   

 
  

  

18

12.Sol: 

13.Sol: 

14.Sol:

15.Sol: 

 
2

22
2

a
a  

Let the equation of line be  Y y M X x  

given that it intersects the coordinate axis, that is

y
X x

m
   and Y y mx 
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16.Sol:   

Hence, 2
y dy y

x x M
m dx x


    

i.e., 0
dy dx

y x
 

integrating both sides, we get

y

dx
dy

x
  

i.e., ln lny x c  

  ln yx c

i.e., cxy e

given that it is passing through (2, 4), that is 8ce 

now 8xy 

This is rectangular hyperbola

hence the focus of 8xy   are (4, 4) and  4, 4 . 

216 9( 1)e 

5

3
e 

1 (5,0)F 

Circle can be drawn touching hyperbola at point A

or B only if Radius 2
17.Sol: We have, for the given hyperbola

 2 5
9 16 1

4
e e     since (5, 0) satisfies the

equation of the line  3 5 4 2 15,x y    so the

reflected ray must pass through  5,0  and

 4 2,3P 

18.Sol: Given ( sec , tan )P a b   and ( sec , tan ).Q a b 

The equation of tangent at point P is

sec tan
1

x y

a b

 
 

Slope of tangent
sec 1

tan sin

b b

a a



 
   

Hence, the equation of perpendicular at P is

sin
tan ( sec )

a
y b x a

b


    

i.e.,   2 2tan sin tanby b a x a     

or     2 2sin ( ) tana x by a b                         (1)

Similarly the equation of perpendicular at Q is
2 2sin ( ) tana x by a b                                  (2)

On multiplying (1) by sin  and (2) by sin ,  we

get
2 2sin sin sin ( ) tan sina x b y a b      

2 2sin sin sin ( ) tan sina x b y a b      

On subtraction we get by
2 2(sin sin ) ( ) (tan sin tan sin )a b        

2 2 tan sin tan sin

sin sin

a b
y k

b

   

 

 
   



2 2

 
       

sin cos    and tan cot 

2 2 tan cos cos sin

cos sin

a b
y k

b

   

 

 
   



2 2 2 2sin cos ( )

cos sin

a b a b

b b

 

 

   
   

 

19.Sol: Let 

16.Sol: 

17.Sol:

18.Sol:

19.Sol: 1ax by   be the chord

Making the equation of hyperbola homogeneous
using (1), we get

2 23 ( 2 4 ) ( ) 0x y x y ax by                (1)

2 2(3 2 ) ( 1 4 ) ( 2 4 ) 0a x b y b a xy       

Since the angle subtended at the origin is a right

angle, so, coefficient of 2 2coefficient of 0x y 

(3 2 ) ( 1 4 ) 0 2 1a b a b        

  The chords are (2 1) 1 0b x by   

or, (2 ) ( 1) 0,b y x   

which, clearly, pass through the fixed point (1,-2).



PERMUTATIONS & COMBINATIONSTIONS

14

Mathematics Times October 18

1. The number of ways in which 5 boys and 3 girls

can be seated on a round table if a particular boy 1B

and a particular girl 1G  never sit adjacent to each

other, is:   [2017]

(a) 5 6! (b) 6 6!

(c) 7! (d) 5 7!
2. If all the words. with or without meaning, are written

using the letters of the word QUEEN and are
arranged as in English  dictionary, then the position
of the word QUEEN is :    [2017]

(a) 

3. The sum  

10
2

1

44th (b) 45th (c) 46th (d) 47th

( 1) ( !)
r

r r


   is equal to:              [2016]

(a) 11 (11!) (b) 10 (11!)

(c) (11!) (d) 101 (10!)

4. If the four letter words (need not be meaningful)
are to be formed using the letters from the word
“MEDITERRANEAN” such that the first letter is
R and the fourth letter is E. then the total number
of all such words is :    [2016]

(a) 110 (b) 59 (c) (d) 56

5. If 

3

11!

(2!)

2
6

2
2

11,
n

n

C

C




  then n satisfies the equation:   [2016]

(a) 2

6. The value of 

110 0n n   (b) 2 2 80 0n n  

(c) 2 3 108 0n n   (d) 2 5 84 0n n  

1515
2

15
1 1

r

r r

C
r

C 

 
 
 

  is equal to :         [2016]

(a) 1240 (b) 560 (c) 1085 (d) 680
7. If in a regular polygon the number of diagonals is

54, then the number of sides of this polygon is
                              [2015]

(a) 12 (b) 6 (c) 10 (d) 9
8. The number of ways of selecting 15 teams from 15

men and 15 women. such that each team consists
of a man and a woman, is:       [2015]
(a) 1120 (b) 1880 (c) 1960 (d) 1240

9. Two women and some men participated in a chess
tournament in which every participant played two
games with each of the other participants. If the
number of games that the men played between
themselves exceeds the number of games that the
men played with the women by 66, then the number
of men who participated in the tounament lies in
the interval:    [2014]

       PERMUTATIONS & COMBINATIONS

  [ONLINE QUESTIONS]

1.

[2017]

2.

[2017]

3. [2016]

4.

[2016]

5.  [2016]

6. [2016]

7.

[2015]

8.

[2015]

9.

[2014]

 

[ONLINE QUESTIONS]
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(a) [8,9] (b) [10,12) (c) (11,13] (d) (14,17)
10. 8-digit numbers are formed using the digits 1, 1, 2,

2, 2, 3, 4 and 4. The number of such number in
which the odd digits do not occupy odd places is
:                                                                           [2014]
(a) 160 (b) 120 (c) 60 (d) 48

11. An eight digit number divisible by 9 is to be formed
using digit from 0 to 9 without repeating the digits.
The number of ways in which this can be done is :

      [2014]
(a) 72(7!) (b) 18(7!) (c) 40(7!) (d) 36(7!)

12. The sum of the digits in the unit’s place of all the 4-
digit numbers formed by using the numbers 3, 4, 5
and 6, without repetition, is :    [2014]
(a) 432 (b) 108 (c) 36 (d) 18

13. 5- digit numbers are to be formed using 2, 3, 5, 7, 9
without repeating the digits. If p be the number of
such numbers that exceed 20000 and q be the
number of those that line between 30000 and 90000,
then p : q is :   [2013]
(a) 6 : 5 (b) 3 : 2 (c) 4 : 3 (d) 5 : 3

14. On the sides AB, BC, CA of a 

18OctoberMathematics Times

,ABC  3, 4, 5 distinct

points (excluding vertices A, B, C) are respectively
chosen.The number of triangles that can be
constructed using these chosen points as vertices
are :    [2013]
(a) 210 (b) 205 (c) 215 (d) 220

15. The number of ways in which an examiner can
assign 30 marks to 8 questions, giving not less
than 2 marks to any question, is :    [2013]

(a) 30

16. A committee of 4 persons is to be formed  from 2
ladies, 2 old men and 4 young men such that it
includes at least 1 lady, at least 1 old man and at
most 2 young men. Then the total number of ways
in which this committee can be formed is:   [2013]
(a) 40 (b) 41 (c) 16 (d) 32

1.Sol: This problem can be easily done using
complementary counting. Number of ways = Total

- when 

2.Sol: Alphabetic order of letters in the given word E,
E, N, Q, U

(1) words starting with E : 

3.Sol: Given that  
10

2

1

10.

[2014]

11.

[2014]

12.

[2014]

13.

[2013]

14.

[2013]

15.

[2013]

16.

[2013]

1C (b) 21
8C (c) 21

7C (d) 30
8C

1. a 2. c 3. b 4. b 5. c
6. d 7. a 8. d 9. b 10. b
11. d 12. b 13. d 14. b 15. c
16. b

1. 2. 3. 4. 5.
6. 7. 8. 9. 10.
11. 12. 13. 14. 15.
16.

1.Sol:

2.Sol:

3.Sol:

1B  and 1G  sit together

Total ways to seat 8 people on table 7!

        

When 1B  and 1G  sit together 6! 2! 

 Number of ways  7! 2 6! 6! 7 2 5 6!      

4! 24

(2) words starting with N : 
4!

12
2


(3) words starting with QE : 3! 6

(4) words starting with QN : 
3!

3
2!


(5) words starting with QUEEN : 1! 1
therefore the required rank is

24 12 6 3 1 46    

1 !
r

r r




Let          2 1 !rT r r 

     2 21 ! ! 1 !r r r r r r r r      

                                1 ! 1 !r r r r   

           1 ! 1 !rT r r r r   

Now         1 1 2! 0T  



7.Sol:

8.Sol:

9.Sol:
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   2 2 3! 1 2!T  

   3 3 4! 2 3!T  

 

   10 10 11! 9 10!T  

which yields    
10

2

1

1 ! 10 11!
r

r r


 

4.Sol: The first letter is R and the last one is E.
Therefore, one has to find two more letters from
the remaining 11 letters. Of the 11 letters, there are

2 ' , 2 'N s E s  and 2 'A s  and one each of the

remaining 5 letters.
The second and third positions can either have
two different letters or have both the letters to be
the same.
Case 1: When the two letters are different. One
has to choose two different letters from the 8
available different choices. This can be done in
8×7 = 56ways.
Case 2: When the two letters are same. There are 3

options - the three can be either 'N s  or 'E s  or

' .A s  Therefore, 3 ways.

Total number of possibilities 56 3 59.  

5.Sol: 
6

2

2
11

2

n C

n P






( 2)( 1) ( 1)( 2)( 3)

6 5 4 3 2 1 11
( 2)( 3)

2 1

n n n n n n

n n

    

     
 



( 2)( 1) ( 1) 11 10 9 8n n n n       

Now 9n 
2 3 108n n 

   
2

9 3 9 108  

81 27 108  

108 108 0  

6.Sol: 

1515
2

15
1 1

r

r r

C
r

C 

 
 
 



18

4.Sol:

Case 1:

Case 2:

5.Sol:

6.Sol:

7.Sol:

8.Sol:

9.Sol:

 

   

     
 

15

15
1

15!

15 ! ! 1 ! 15 ! 16 !

15! 15 ! !

16 ! 1 !

r

r

r r r r rC

r rC

r r


   
 



 

                     
16 r

r




15 15
2

1 1

16
(16 )

r r

r
r r r

r 

 
   

 
 

15 15
2

1 1

16
r r

r r
 

  

16 15 16 15 31 16

2 6

   
 

  8 15 16 5 8 31 1920 1240 680        
 Given that Number of diagonal = 54

We know that 
( 3)

54
2

n n 


2 23 108 0 12 9 108 0n n n n n        

( 12) 9( 12) 0n n n    

12, 9 12( 9)n n n      

 The number of ways of choosing first couple

is15 
2

15 15
15 ,

1 1

   
    

   

Likewise second couple can be chosen in 1

2
14 14

14 ,
1 1

   
    

   

and similarly 3 ,4 ,...,15rd th th  couples can be chosen

in 2 2 213 ,12 ,...1  ways respectively..

Thus the number of ways of choosing the couple

is 
   2 2 2

15 15 1 2 15 1
15 14 ... 1 1240

6

   
    

 Let there be n number of men and 2 women.
Then the number of games that the men play

between themselves is 2
2

n 
  
 

 and the number of

games that the men played with the women is

 2 2n
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 2 2 2 66
2

n
n

 
    
 

 2 5 66 0n n  

i.e., 11n
therefore the number of men participants is 11.

10.Sol: Odd digits cannot occupy odd places, so odd
digits should occupy even places i,e 4 possiblities
and odd numbers are three.
(1) So selecting three positions from 4 positions

can be done in 



4

3

 
 
 

 ways that is 4 ways.

(2) Filling the three positions with three numbers
can be done is 3! ways but 1,1 are identical so total

number of ways is 
3!

2!
 i,e.,  3

Now filling the remaining 5 positions can be done
in 5! ways but again 2, 2, 2 are identical and 4, 4 are

identical so number of ways is 
5!

3! 2!  i.e., in 10

ways so the total number of ways is

4 3 10 120.  
11.Sol: The sum of all the numbers between 0 and 9 is

45, hence a multiple of 9.
This means that if we want the sum of 8 numbers
taken in this list to be multiple of 9, the sum of the
two remaining numbers will also be a multiple of 9.
The only possible pairs are (0, 9), (1, 8), (2, 7), (3, 6),
(4, 5). when we select a given pair , we have then

12.Sol: With each of the digits 

8! 40320  possibilities to form the required

number with 8 digits
Since we have 5 different pairs, the answer is

5 8!  If we remove leading 0 numbers , the number

of possibilities become 7 7!  for the last four pairs.

Therefore the answer then becomes

4 7 7! 8! 36 7!    

 3, 4,5,6  in the units

place there are 3! four digits numbers are possible.
Now the sum of the digits in the units place is

 3! 3 4 5 6 6 18 108     

13.Sol: All the 5-digit numbers formed using these
digits 2, 3, 5, 7 and 9 would be greater than 20000.

So total number of such possible numbers 

14.Sol: Any three points selected can not form a triangle
if and only if all three are collinear”.
Say 3, 4 and 5 points are marked on a triangle,
altogether 12 points (excluding the three vertices
of the original triangle)

Select any 3 points from all 
12

5!

And for numbers lying between 30000 and 90000
We have only 3 options to fill the first position i.e.
ten thousands place and the rest 4 places can be

filled in 4!, so total such ways 3 4! 

Hence, : 5 : 3p q 

12 220
3

 
  
 

 Number of collinear point selection cases

3 4 5

3 3 3

     
       
     

where the three points have been selected
fromthose points on the same side of the

triangle.1 4 10 15    which yields, Total triangles

= 220-15 = 205.
15.Sol: First of all give 2 marks to each student (Total

16 marks). so now we have to distribute remaining
14 marks to 8 questions and all the question can
get zero or more marks. So it will be same as
distributing 14 coins among 8 beggars. So, Number
of ways

16.Sol: Since at least 1 lady, at least 1 old men and at
most 2 young men must be chosen, we consider all
committees which include 1, 1, 2, and 2 lady, with 1,
2,  1, and 2 old men, and 2, 1, 1, and 0 young men
respectively. That is, we want to add the number of
ways to:
• Choose 1 from 2 ladies, 1 from 2 old men, and 2

from 4 young men 2 2 4
1 1 2

10.Sol:

11.Sol:

12.Sol:

13.Sol:

14.Sol:

15.Sol:

16.Sol:

14 8 1 21
.

8 1 7

    
   

   

21C C C  

• Choose 1 from 2 ladies, 2 from 2 old men, and 1

from 4 young men 2 2 4
1 2 1 8C C C  

• Choose 2 from 2 ladies, 1 from 2 old men, and 1

from 4 young men 2 2 4
2 1 1 8C C C  

• Choose 2 from 2 ladies, 2 from 2 old men, and 0

from 4 young men 2 2 4
2 2 0 1C C C  

Total 24 8 8 1     41
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Introduction
Complex Numbers are a very popular and frequently
used aspect of Mathematics. Composed of a real
part and an imaginary part, they are written in the

form x iy . x denotes the real part and iy denotes

the imaginary part. Complex numbers can be
represented on an Argand Diagram. An Argand
Diagram is similar to the Cartesian Coordinate
System except that the Real axis and Imaginary
axis replace the X and Y axis respectively which
you would usually expect to see on the Cartesian
system. This is shown in Figure 1.

(1) Imaginary Number
Square root of a negative real number is an
imaginary number, while solving equation

2 1 0x    weget 1x     which is imaginary,,

so the quantity 1  is denoted by ‘i’ called

‘iota’ thus 1i    .

e.g. 2, 3, 4   ........... may expressed as

2, 3 ,2 ..........i i i

(I) Properties of iota (i) :

2 3 41 1, 1i  so i i i and i       .

Hence, , , 1, ,1nn N i i i     attains four values

according to the value of n, so
4 1 4 2 4 3 4 4, 1 , 1n n n ni i i i i i        

(II) Powers of the number i :

The formulas for the powers of a complex
number with integer exponents are preserved

for the algebraic form .z x iy   Setting z i ,

we obtain
4 4 1 4 2 4 31, , 1, ,m m m mi i i i i i m Z         .

Hence, { 1,1 , }mi i i    for all integers 0m  .

If m is a negative integer, we have

Introduction

(1) Imaginary Number

(I) Properties of iota (i) :

(II) Powers of the number :

(2) Basics
Definition:

Properties of Complex Numbers




1 1
( ) ( )



   
    

 

m

m m mi i i
i

.

 A complex number is a number of

the format : , ,  z x iy x y R , where 2 1 i ,

x is a real part, iy is an imaginary part and y is
coefficient of the imaginary part. The set of
complex numbers includes the set of real
numbers, and it is denoted by  C.

If  z x iy , then the real part of z is denoted by

Re ( )z and the imaginary part by Im ( )z .

A complex number is said to be purely imaginary  if

Re ( ) 0z .

COMPLEX NUMBERS
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 A complex number is said to be purely real if

Im( ) 0z .

 The complex number 0 0 0  i  is both purely real

and purely imaginary.
 Two complex numbers are said to be equal if and

only if their real parts and imaginary parts are

separately equal, i.e., 1 1 2 2x iy x iy    implies

1 2 1 2andx x y y  .

 However, there is no order relation between complex

and the expressions of the type 1 1 2 2

are meaningless.
(I) The sum of the complex numbers

Let 

(A) Properties concerning addition
The addition of complex numbers satisfies
the following properties:

 Commutative law:

 Additive law:

 Additive identity:

There is a unique complex number 

( )   x iy or x iy

1 1 1 2 2 2and   z x iy z x iy , then

1 2 1 2 1 2( ) ( )    z z x x i y y

1 2 2 1  z z z z  for all 1 2, z z C

1 2 3 1 2 3( ) ( )    z z z z z z for all

1 2 3, , z z z C

0 (0,0)

such that 0 0  z z  for all ( , ) z x y C .

 Additive inverse:

For any complex number ( , )z x y  there is

a unique ( , )    z x y C  such that

( ) ( ) 0.z z z z     

The number 1 2 1 2( )   z z z z is called the

difference of the 1 2andz z . The operation

that assigns to the numbers 1 2andz z   the

number 1 2z z  is called subtraction and is

defined by 1 2 1 1 2 2( ) ( )     z z x iy x iy

1 2 1 2( ) ( )   x x i y y C .

(II) The multiplication of complex numbers

1 2 1 2 1 2 1 2 2 1( ) ( )    z z x x y y i x y x y

(A) Properties concerning multiplication:
The  multiplication of complex numbers
satisfies the following properties.

 Commutative law

 Associative law
1 2 2 1  z z z z  for all 1 2, z z C

1 2 3 1 2 3( ) ( )    z z z z z z for all

1 2 3, , z z z C .

 Multiplicative identity
There is a unique complex number

1 (1,0) C such that 1 1   z z z  for all

z C .
 Multiplicative inverse

For any complex number ( , ) * z x y C

there is a unique number 1 ( , )z x y C  

such that 1 1z z 
 Distributive law

1 2 3 1 2 1 3( )     z z z z z z z  for all

1 2 3, , z z z C .

(III) Quotient rule:

Two complex numbers 1 1 1( , )z x y C   and

( , ) * z x y C  uniquely determine a third

number called their quotient, denoted by 
1z

z

and defined by

11
1 1 1 2 2 2 2

( , ) ,  
     

  

z x y
z z x y

z x y x y

           
1 1 1 1

2 2 2 2
,

   
  

  

x x y y x y y x
C

x y x y

The following properties hold for all complex

numbers 1 2, , z z z C * and for all integer

m,n.

 m n m nz z z   ;

  


m
m n

n

z
z

z
 ;

  ( ) m n mnz z  ;

  
1 2 1 2( )  n n nz z z z ;











(I) The sum of the complex numbers



 Additive law:

 Additive identity:

 Additive inverse:

(II) The multiplication of complex numbers

 Commutative law

Associative law

 Multiplicative identity

 Multiplicative inverse

 Distributive law

(III) Quotient rule:










1 1

2 2

n n

n

z z

z z

 
 

 
.

When 0z , we defined 0 0n  for all integers

0n .
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There is bi-univocal correspondence between

the set of complex numbers  z x iy  and the

set of complex numbers and the set of  points

( , )M x y  from plane.

 The point ( , )M x y  is called the

geometric image of the complex number

.z x yi 

The complex number  z x yi  is called the

complex coordinate of the point ( , ).M x y  Wee

will use the notation ( )M z  to indicate that the

complex coordinate of M is the complex number
z.

        

         

The geometric image of the complex conjugate

z of complex  z x yi  is the reflection point

'( , )M x y  across the x-axis of the point ( , )M x y

(see the above Fig).

The geometric image of the additive inverse - z  of

a complex number  z x yi is the reflection

''( , ) M x y  across the origin of the point

( , )M x y .

The bijective function   maps the set R onto  the

x - axis, which is called the real axis. On the  other
hand, the imaginary complex numbers correspond
to the y-axis, which is called the imaginary axis.

The plane  , whose points are

identified with complex numbers, is called the
complex plane.
On the other hand, we can also identify a complex

number  z x yi  with the vector ,V OM


where ( , )M x y  is the geometric image of the

complex number  z.

Let 0V  be the set of vectors whose initial points

are the origin O. Then we can define bijective
function
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0' : , '( )C V z OM v xi yj     
  

,

where ,
 
i j  are the vectors of the x-axis and  y-axis,

respectively.
(I)  Geometric interpretation of the modulus:

Let us consider a complex number  z x yi

and the geometric image ( , )M x y  in the

complex plane. The Euclidean distance OM is
given by the formula

2 2( ) ( )M O M OOM X X Y Y   

hence, 2 2( ) ( ) | | | |   


OM x y z v . In other

words, the absolute value | |z  of a complex

number  z x yi  is the length of the

segment OM or the magnitude of the vector

 

v x yi .

Remarks :
 For a positive real number r, the set of

complex numbers with moduli r corresponds

in the complex plane to ( ; )C O r , our

notation for the circle C with centre O and
radius r.

 The complex numbers z with | |z r

correspond to the interior points of circle C.
On the other hand, the complex numbers z

with | |z r  correspond to the points in the

exterior of circle C.

A complex plane is the plane in which we

represent the complex numbers  z x iy .

(II) Geometric Interpretation of the Algebraic
Operations Addition and Substraction.

Consider the complex numbers 1 1 1z x y i 

and 2 2 2 z x y i  and the corresponding

vectors 
1 1 1 

 
v x i y j  and 

2 2 2 
 

v x i y j

observe that the sum of the complex numbers is

1 2 1 2 1 2( ) ( )    z z x x y y i ,

Therefore, the sum 1 2z z  corresponds to the

sum 1 2
 
v v .

     

(III) Real multiples of a complex number:

Consider a complex number  z x iy  and the

corresponding vector  
 

v xi yj . If  is a real

number, then the real multiple  z x i y  

corresponds to the vector

 
 

v xi yj  

Note that 0   then the vectors and
 
v v

have the same orientation and

| | | |v v 
 

.

When 0 , the vector v  changes to the

opposite orientation and

         | | | |
 
v v  .

Of course, if 0  , then 0v 
 .

            

(I)  Geometric interpretation of the modulus:

Remarks :




(II) Geometric Interpretation of the Algebraic
Operations Addition and Substraction.

(III) Real multiples of a complex number:
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(4) Trigonometric Representation
(I) Complex Numbers in Trigonometric form

A complex number  z x iy  is represented

by the point ( , )x y  in the complex plane.

From the properties of complex numbers we
can write

Re( ) cos( ) x z z

( ) sin( ) y Im z z ,

where 2 2 z x y . This is shown in the

picture below:

Note that the  ( , )x y  pair can equivalently be

described by trigonometric functions of another

pair (| |, ),z   often denoted by ( , ).r   These

are referred to as the polar coordinates of the
complex number z. r is a non-negative number
denoting the magnitude of the complex number

(the radius of the circle) and is represented on
the radial axis that extends outward from the

origin at (0,0). An expression for   can be

obtained by dividing sin( )y z   by

cos( )x z  :

arctan
 

  
 

x

y


and is called the argument of the complex
number.
(II) Properties of Argument

 1 2 1 2 1 2arg( ) arg( ) arg( )   z z z z 


1

1 2 1 2

2

arg arg( ) arg( )
 

    
 

z

z
 

  arg( ) arg( ),n

z z

z n z n I 

In the above result 1 2 1 2or     are not

necessarily the principle values of the
argument of corresponding complex
numbers.

 arg( ) 0, ,

 

 z z  is a purely real number

 z z

arg( ) ,
2 2

z z
 

   is a purely imaginary

number   z z

(5) Exponential Representation

  Polar and Rectangular Form
Any complex number can be written in two ways,
called rectangular form and polar form.

Rectangular : 

 To convert from polar to rectangular

If you have a complex number in the form 

(4) Trigonometric Representation
(I) Complex Numbers in Trigonometric form

(II) Properties of Argument











(5) Exponential Representation

 Polar and Rectangular Form

 To convert from polar to rectangular

 z x iy

           Polar : iz re 
To convert from one form to the other, use Euler’s
formula.

cos sin ie i  

ire   it is
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relatively straight forward to convert it into the

form .x iy  Euler’s formula says that ire   is the

same as cos sin .r ir   This is ,x iy  where,

       cosx r 

        siny r 

These are the same equations that we always

convert a pair ( , )r   of polar coordinates to

rectangular coordinates ( , )x y .

 To convert from rectangular to polar

If we  have a complex number in the form x iy ,

we can convert it to the polar form ire   by finding

suitable values of r and  . The radius r is easy to

find using the formula

        2 2 r x y

The angle   is a bit more difficult. We usually

use the formula

       arctan
y

x


but there two limitations.
  If x is negative, add ( or subtract)  to the

result. This is because the arctan function

always gives a value between and
2 2


 

, so

it will never give you ray pointing in the
negative x direction.

 If  0x , then 
y

x
 is not defined. In this case

the point x iy  lies on the y- axis (the

imaginary axis). Then   is either 
2


(if y is

positive) or 
2




(if y is negative).

These limitations are tricky at first, but they
are not too hard to remember and try to picture
where the point is (i.e., which quadrant).

 Geometric Interpretation of Euler’s Formula
Euler’s formula allows for any complex number

x to be represented as ,ixe  which sits on a unit

circle with real and imaginary components cos x

and sin x , respectively. Various operations ( such

as finding the roots of unity) can then be viewed
as rotations along the unit circle.

 Trigonometric Applications
One immediate application of Euler’s formula is
to extend to definition of the trigonometric
functions to allow for arguments that extend the
range of the functions beyond what is a l l o w e d
under the real numbers.
A couple of useful results to have at hand are
the facts that

  cos sin  ie i  

so

   2cosi ie e   

It  follows that

   cos
2




i ie e 



and similarly

sin
2

i ie e

i

 






and

 tan
( )










i i

i i

e e

i e e

 

 


(6) Important Theorems and Properties
(I) De Moivre’s Theorem:

An important corollary of Euler’s theorem is
de Moivre’s theorem.
Theorem (De Moivre’s Theorem).

       (cos sin ) cos sinni n i n     

Applications:
De Moivre’s theorem has many applications.

 To convert from rectangular to polar





 Geometric Interpretation of Euler’s Formula



(6) Important Theorems and Properties
(I) De Moivre’s Theorem:

Theorem

Applications:
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(VII) 

(VIII)

18

As an example, one may wish to compute the
roots of unity, or the complex solution set to

the equation 1nx  for integer n.

Notice that 2 kie   is always equal to 1 for k

an integer, so the thn  roots of unity must be

    
2 / 2 2

cos sin
   

    
   

ki n k k
e i

n n
  

This process is initially difficult to divide
the unit circle into n equally spaced wedges.

(II) Section Formula:

If points 1( )A z  and 2( )B z  represent the

complex numbers 1z  and 2z  respectively in

the Argand plane, then:

    

2 1mz nz
C

m n

 
   

is the point dividing AB in the

ratio m : n.

(III) 1 2 3 1 2 3..... .......n nz z z z z z z z   .

arg 1 2 3 1 2( ..... ) arg( ) arg( )nz z z z z z   

          ....... arg( )nz 

When complex numbers are multiplied, their
modulii get multiplied and their arguments get
added together.

(IV) 
11

2 2

zz

z z
 1

1 2

2

arg arg( ) arg( )
z

z z
z

 
  

 

When two complex numbers are divided, their
arguments are subtracted to get the argument
of their quotient.

(V) (i) 
1 2 3 1 2 3..... ....n nz z z z z z z z        

(ii) 
1 2 3 1 2 3..... ....n nz z z z z z z z    

(iii) 
1 1

2 2

z z

z z

 
  

 

(iv)    
n

nz z

(VI) 2Re( )z z z z z    

if z is purely imaginary ( ( ) 0)Re z 

2 Im( )z z i z z z   

if z is purely real ( ( ) 0)Im z 

2 1
1zz z z if z

z
   

z z z    and arg ( ) arg( )z z 

(IX) 
nnz z

(X) 0( )z z  is a factor of f (z) if and only if

0( ) 0f z 

 
1 2 1 2 1 2 1 22Re( ) 2Re( )z z z z z z z z  

1 2 1 2z z z z  is purely real

  
2 2 2

1 2 1 2 1 2 1 2( )z z z z z z z z    

     
2 2 2 2

1 2 1 2 1 2 1 22 Re( ) 2 Re( )z z z z z z z z     


2 2 2 2

1 2 1 2 1 22z z z z z z     
 

 Re( ) , Im( )z z z z z z     

Triangle Inequality :

(i) 1 2 1 2z z z z  

(ii) 1 2 1 2z z z z  

  
1

tan
21

i

i

e
i

e










Finding the thn  roots of z
(1)  The thn  Root of Unity

Let x be thn  root of unity. Then

1 1 0 cos0 sin 0     nx i i

cos(2 0 ) sin(2 0 )    k i k 

cos 2 sin 2 k i k  (where k is an integer)

    

18

(II) Section Formula:

(III)

(IV)

(V) (i)

(ii)

(iii)

(iv) 

(VI)

(VII) 

(VIII)

(IX)

(X)











(i)

(ii)



Finding the  roots of z
(1)  The  Root of Unity

2 2
cos sin 0,1,2,... 1    

k k
x i k n

n n

 

Let cos 2 sin 2 .n i n     Then thn  root

of unity are ( 0,1, 2,..., 1)t t n   , i.e., the

thn  roots of unity are  2 3 1, , ,... n    
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(I) Properties of n roots of Unity Properties:
  Sum of n roots unity is zero

2 1 1
1 ... 0

1

n
n 

  


 
     



1

0

2
cos 0





 
n

k

k

n


 and  

1

0

2
sin 0






n

k

k

n



Thus the sum of the roots of unity is zero.

 Sum of thp  power of n roots of unity is zero,

if p is not a multiple of n

2 1 1 ( )
1 ( ) ... ( )

1

n p
p p n p

p


  


 

    


              

2

1

1

np
i

n

p

e




 
  
 


                         
21 ( )

1

i p

p

e 








 Sum of 

  Product of the roots

1.

 The points represented by the 

thp  power of n roots of unity is n, if

p is a multiple of n

Let p n , thus

2
2 (cos2 sin2 ) 1

p
i

p ine e i


      

2 11 ( ) ... ( )p p n p      
1 ( )

1

n p

p










1 1 1 ... ( )n times n    

( 1)
2 1 2( ) ( )

n n
p p n p   


 

                 

( 1)

22 2
cos sin

 


 
  
 

n n

i
n n

                                      cos( 1) sin( 1)    n i n

If n is even, 
( 1)

2 1
n n




   and in case n is

odd  
( 1)

2 1
n n






thn n  roots

of unity are located at the vertices of a
regular polygon of n sides inscribed in a unit
circle having centre at the origin, one vertex

being on the positive real axis (Geometrically
represented as shown)

(II) Cube roots of unity:

For 3,n  we get the cube roots of unity

and they are 
2 2

1,cos sin
3 3
 i

 
 and

4 4
cos sin

3 3
 i

 
 i.e., 

1 3
1,

2

  i
 and

1 3

2

  i
. They are generally denoted by

1, 2and   and are geometrically

represented by the vertices of an equilateral
triangle whose circumcentre is the origin and
circumradius is unity.

Properties of Cube Roots of Unity

(I) Properties of n roots of Unity Properties:










(II) Cube roots of unity:

Properties of Cube Roots of Unity
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 3 1 

  21 0   

 21 3,  n n   where n is multiple of 3.

 21 3  n n  , (n is an integer, not a

multiple of 3).


2

2

1 1
and  


.

  2 2( ) 

 2 2and    

(2) Logarithm of Complex Number

In order to find log( )x iy , we write

log( )  x iy a ib

[cos sin ]    a ib ax iy e e b i b

(cos(2 ) sin(2 ))   ae k b i k b 

cos(2 )  ae k b x  and

sin(2 ) ae k b y

Solve for anda b

2 2 2  ae x y      or 
2 21

ln( ),
2

a x y 

tan(2 )
y

k b
x


 

   
 

When 0k , corresponding values of  anda b

are referred to as principle values.
(I) Method to Find

( )  a ibx iy  For evaluating ( )  a ibx iy  we write

( )    a ibc id x iy

log( ) ( ) log( )     c id a ib x iy

Now evaluating log( )x iy and then solve

( ) log( )   a ib x iyc id e
(3) Important Relations

 2 2 ( )( )x y x yi x yi   

 3 3 2( )( )( )x y x y x y x y     

 3 3 2( )( )( )x y x y x y x y     

 3 3 3 3x y z xyz  

      2 2( )( )( )x y z x y z x y z         

 2 2 2x y z xy yz zx    

2 2( )( )x y z x y z       

Geometry via Complex Numbers
(1) Concept of Rotation

If and 'z z  are two complex numbers then

argument of 
'

z

z
 is the angle through which oz

must be turned in order that it may lie along
oz .

| | | |

' | ' | | ' |

i
i

i

z z e z
e

z z e z





 

         

18















(2) Logarithm of Complex Number

(I) Method to Find

(3) Important Relations











Geometry via Complex Numbers
(1) Concept of Rotation
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In general, let 1 2 3, ,z z z , be the three vertices of

a triangle ABC described in the counter-clock
wise sense. Drawn OP and OQ parallel and equal
to AB and AC respectively. Then the point P is

2 1z z  and

3 1 3 1

2 1 2 1

| |
(cos sin )

| |
i iz z z zCA

i e e
z z BA z z

  
 

  
 

Note that 3 1 2 1arg( ) arg( )   z z z z   is the

angle through which OP must be rotated in the
anti- clockwise direction so that it becomes
parallel to OQ.

Here we can write 
3 1 3 1

2 1 2 1

| |

| |

 


 
iz z z z

e
z z z z



In this case we are rotating OP in clockwise

direction by an angle (2 ).   Since rotation

is in clockwise direction, we are taking negative

sign with angle (2 )  .

(2)  Section formula

Let 1 2andz z  be any two complex numbers

representing the points A and B respectively in
the argand plane. Let C be the point dividing

the line segment AB internally in the ratio : ,m n

i.e., 
AC m

BC n
 and let the complex number

associated with C be z. Let us rotate the line BC
about the point C so that it becomes parallel to
CA. The corresponding equation of rotation will
be

(3) Condition for Collinearity
If there are three real numbers (other than 0)

1 1

2 2

| |
( 1)

| |

 
  

 
iz z z z m

e
z z z z n



1 2nz nz mz mz    

1 2
 



nz mz
z

m n

Similarly if ( )C z  divides the segment AB

externally in the ratiio of  :m n

     
1 2

 


nz mz
z

m n

In the specific case, if  ( )C z  is the mid-point of

AB then 
1 2

2




z z
z

 

, andl m n  such that 1 2 3 0  lz mz nz  and

0  l m n  then complex numbers

1 2 3, andz z z  will be collinear..

(4) Equation of a straight line

Writing 

(2)  Section formula

(3) Condition for Collinearity

(4) Equation of a straight line

,
2 2

 
 

z z z z
x y  etc. and

rearranging terms, we find that the equation of

the line through 1 2andz z  is given by

1 1

2 1 2 1

z z z z

z z z z

 


 
 or 1 1

2 2

1

1 0

1



zz

z z

z z
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(5) Equation of a straight line with help of
rotation formula

Let 1 2( ) and ( )A z B z  be any two points lying

on  any line and we have to obtain the equation
of this line. For this purpose let us take any

point ( )C z  lying on this line. Since

1

2 1

arg 0 or





z z

z z
 .

1 1

2 1 2 1

z z z z

z z z z

 


 

This is the equation of the line that passes

through 1 2( ) and ( ).A z B z  After rearranging the

terms, it can also be put in the following form

1 1

2 2

1

1 0

1



zz

z z

z z

             

(I) General equation of the line:
From equation (1) we get,

 2 1 1 2 1 1 2 1 1 2 1 1( )      z z z z z z z z z z z z z z

 2 1 1 2 1 2 1 2( ) 0z z z z z z z z z z      

Here, 
1 2 1 2z z z z  is a purely imaginary number

as 
1 2 1 2 1 22 Im( )z z z z i z z  .

Let
1 2 1 2 ,  z z z z ib b

2 1 1 2( ) ( ) 0     z z z z z z ib

2 1 2 1( ) ( ) 0zi z z zi z z b     

Let 2 1( )a i z z 

1 2( )  a i z z

0   za za b
This is the general equation of a line in the
complex plane.

(II) Slope of a given line:

Let the given line 0   za za b .

Replacing z by x iy ,  we get

( ) ( ) 0    x iy a x iy a b

( ) ( ) 0     x a a iy a a b

Its slope is 2

2Re( ) Re( )

( ) Im( )2 Im( )


  



a a a a

i a a ai a

(III) Equation of  a line parallel to given line:
Equation of a line parallel to the line

0  za za b  is 0  za za   (where   is

a real number)
(IV) Equation of a line perpendicular to given

line:
Equation of a line perpendicular to the line

0  za za b  is 0za za i   ( where 
is a real number)

(V) Equation of Perpendicular Bisector:
Consider a line segment joining

1 2( ) ( ).A z and B z  Let the line ‘L’ be its

perpendicular bisector. If ( )P z  be any point

on the ‘L’, we have

1 2| | | |PA PB z z z z    

2 2
1 2| | | |z z z z   

18

(5) Equation of a straight line with help of
rotation formula

(I) General equation of the line:

(II) Slope of a given line:

(III) Equation of  a line parallel to given line:

(IV) Equation of a line perpendicular to given
line:

(V) Equation of Perpendicular Bisector:

1 1 2 2( )( ) ( )( )z z z z z z z z     
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1 1 1 1zz zz z z z z   

2 2 2 2zz zz z z z z   

      2 1 2 1 1 1 2 2

(VI) Perpendicular Distance of a given point from
a  given line

Let the given line be 

Note:

0arg( )z z

with the positive direction of x - axis)
(6) Equation of a Circle

Consider a fixed complex number 

( ) ( ) 0z z z z z z z z z z      

0za za b    and the

given point cz . Saying c cz x iy  .

Replacing z by ,x iy  in the given equation,

we get,

( ) ( ) 0x a a iy a a b    

Distance of ( , )c cx y from this line is

2 2

| ( ) ( ) |

( ) ( )

c cx a a iy a a b

a a a a

   

  

2 2

| |

4(Re( )) 4( ( ))

c cz a z a b

a im a

 




| |

2 | |
c cz a z a b

a

 


   represents a line passing

through 0z  with slope tan . (making angle 

0z and let z be

any complex number which moves in such a

way that it’s distance from 0z  is always equals

to ‘r’. This implies z would lie on a circle whose

centreis 0z  and radius r. And its equation would

be 0| |z z r  .

2 2
0| |z z r  

2
0 0( )( )z z z z r   

2
0 0 0 0 0zz zz zz z z r     

Let 0a z   and 2
0 0z z r b 

0zz az az b

It represents the general equation of a circle in
the complex plane.

(I) Properties of Circles



    

0zz az az b     represent a circle

whose centre is a  and radius is aa b .

Thus 0zz az az b    , ( )b R

represents a real circle if and only if

0aa b

Now let us consider a circle described on a

line segment 1 2

 

, ( ( ), ( ))AB A z B z  as diameter..

Let ( )P z  be any point on the circle. As the

angle in the semicircle is / 2, / 2APB   .

1

2

arg / 2
z z

z z


 
   

 

(VI) Perpendicular Distance of a given point from
a  given line

Note:

(6) Equation of a Circle

(I) Properties of Circles





1

2

z z

z z




  is purely imaginary

1 1

2 2

0
z z z z

z z z z

 
  

 

1 2 2 1( )( ) ( )( ) 0z z z z z z z z      
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  Let 1 2andz z  be two given complex numbers

and z be any complex numbers.

Such that 
1

2

arg
z z

z z


 
 

 
,  where (0, ) 

Then ‘z’ would lie on an arc of segment of a

circle on 1 2z z , containing angle  . Clearly if

( / 2), z   would lie on the major arc

(excluding the points 1 2andz z ) and

( / 2, ), ' 'z    would lie on the minor arc

(excluding the points 1 2andz z .

Note:

The sign of  determines the side of 1 2z z   on

which the segment lies. Thus   is positive in

fig 17(a) and negative in fig 17(b).
  Let ABCD be a cyclic quadrilateral such that

1 2 3 4( ), ( ), ( ) and ( )A z B z C z D z  lie on a

circle. Clearly A C    .

2 34 1

2 1 4 3

arg arg
z zz z

z z z z


   
    

    

2 34 1

2 1 4 3

arg
z zz z

z z z z


   
   

   

4 1 2 3

2 1 4 3

( )( )

( )( )

z z z z

z z z z

 


   is purely real.

(II) Equation of Tangent To A Given Circle

Let 0| |z z r   be the given circle and we have

to obtain the tangent at 1( )A z . Let us take any

point ( )P z on the tangent line at 1( )A z .

18



Note:



(II) Equation of Tangent To A Given Circle

Clearly / 2PAB  

1

0 1

arg
2

z z

z z

 
  

 
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1

0 1

z z

z z




  is purely imaginary

1 1

0 1 0 1

0
z z z z

z z z z

 
  

 

1 0 1 1 0 1( )( ) ( )( ) 0z z z z z z z z      

0 1 0 1 1 1 1 0 1 1( ) ( )z z z z z z z z z z z z      

1 0 0z z 

2
0 0 1 1( ) ( ) 2 | |z z z z z z z    

1 0 1 0 0z z z z  

In particular  if given circle is | |z r , equation

of the tangent at 1z z  would be,

2 2
1 1 12 | | 2zz zz z r  

If 
1

2

z z

z z





 ( , 1)R   ,

where 1 2andz z  are the given complex

numbers and z is an arbitary complex number
then z would lie on a circle.

Note :

 If we take ‘C’ to be the mid-point of 2 1A A  , it

can be easily proved that 2
1( )CA CB CA 

i.e., 2
1 0 2 0| || | .z z z z r    where the point

C is denoted by 0z  and r is the radius of the

circle.

  If 1 21 | | | |z z z z       hence ( )P z
would lie on the right bisectors of the line

1 2( ) and ( )A z B z . Note that in this case

1 2andz z  are the mirror images of each other

with respect to the right bisector.

Some important results to
remember
 The triangle whose vertices are the points

represented by complex numbers 1 2 3, ,z z z  is

equilateral if 
2 3 3 1 1 2

1 1 1
0

z z z z z z
  

   ,

i.e., if 2 2 2
1 2 3 1 2 2 3 3 1z z z z z z z z z     .

 1 2| | | |z z z z     , represents an ellipse if

1 2| |z z   , having the points  1 2andz z  as

its foci. And if 2| |z z   , then z lies on a line

segment connecting 1 2andz z .



1. Let n be a positive integer. Then 4 1 4 5( ) ( )n ni i 

(a) 0 (b) 2i (c) i (d) -i

2. The complex number 

1 2| | | |z z z z    , represents a hyperbola

if 1 2| |z z   , having the points 1 2andz z  as

its foci. And if  2| |z z   , z lies on the passing

1 2andz z  excluding the points between

1 2andz z .

Note :





Some important results to
remember






  

1 2

1

i

i




 lies in the quadrant

number
(a) I (b) II (c) III (d) IV

3. The imaginary part of ii  is
(a) 0 (b) 1 (c) 2 (d) -1

4. If 1 2 and z z  are complex numbers satisfying

1 2

1 2

1
z z

z z




  and 
1 2

1 2

arg
z z

n
z z


 

  
 

 n

then 
1

2

z

z  is always

(a) Zero
(b) A rational number
(c) A positive real number
(d) A purely imaginary number

5. If 

1.

2.

3.

4.

5. 1 2,Z Z are two complex numbers satisfying

1 2
1

1 2

3
1, 3

3

Z Z
z

Z Z


 

  then 2z 
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(a) 1 (b) 2 (c) 8 (d)  4

6. If 
4

2z
z

  , then the maximum value of z  is

equal to

(a) 3 1 (b) 5 1

(c) 2 (d) 2 2

7. For all complex numbers 1 2,z z  satisfying 1 12z 

 and 2 3 4 5z i   , find the minimum value of

1 2z z

(a) 2 (b) 25 (c) 22 (d) 10

8. If 1z  and 2z  are purely real then 1 2 1 2, , ,z z z z  form

(a) Parallelogram (b) Square
(c) Rhombus (d) Straight line

9. If 1 2,z z and 3 4,z z  are two pairs of conjugate

complex numbers, then 
1 2

4 3

arg arg
z z

z z

  
   

   

equals

(a) 0 (b) 
2


(c) 

3

2


(d) 

10. The number of solutions of the equation 2 0z z 
is
(a) 1 (b) 2 (c) 3 (d) 4

11. If cis is a solution of the equation

1 2
1 2 .... 0n n n

nx p x p x p       then the value

of 1 2sin sin 2 ... sinnp p p n     

(a) 0 (b) n (c) 2n (d) 
2n

12. If 2 1 0z z   , where z is a complex number then

the value of

2 2 2 2

2 3 6

2 3 6

1 1 1 1
...z z z z

z z z z

       
              

       

is
(a) 18  (b) 54  (c) 6 (d) 12

13. The common values of 6th  roots of unity and cube

roots of unity are

(a) 
1 3 1 3

1, ,
2 2

i i   
(b) 

1 3 1 3
1, ,

2 2

i i 

(c) 
1 3 1 3

1, ,
2 2

i i   
         (d) 

1 3 1 3
1, ,

2 2

i i 

14. If   is a non-real roots of 6 1x   then

5 3

2

1

1

  



  




(a) 2 (b) 0 (c) 2 (d) 

15. Let 4 3 2( ) 1f x x x x x      find the remainder

when 5( )f x  is divided by ( )f x .

(a) 0 (b) 1 (c) 2 (d) 5

16. If 1 2 3 41, , , ,     are distinct fifth unity evaluate

two expression below

1 2 3 4

31 31 31 31

2 2 2 2   
  

   

(a) 49 (b) 4a
(c) 31 (d) None of these

17. There are 24 different complex numbers z such that
24 1z  . For how many of these is 6z  a real

number?
(a) 0 (b) 4 (c) 6 (d) 12

18. If 2 3 5z i    then the locus of z is

(a) A circle with centre (2,3) and radius 25 units
(b) A circle with centre (-2,-3) and radius 25 units
(c) A circle with centre (2,3) and radius 5 units
(d) A circle with centre (-2,-3) and radius 5 units

19. The area of the triangle with vertices , ,z iz z iz is

50 then z 

(a) 0 (b) 5 (c) 10 (d) 15

20. Reflection of the line 0az az   in the real axis is

(a) 0az az  (b) 0
a z

a z
 

(c) ( ) ( ) 0a a z z   (d) 0az 

21. In the Argand diagram P denotes Z.

If 

18

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

4
2

2

z i

z





 then the locus of P is

(a) The perpendicular bisector of 1 2,P P  where

1 4P i  and 2 2P 

(b) A line perpendicular to 1 2PP  cutting it in the

ratio 2:1
(c) A circle
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(d) A line parallel to 1 2

22. Let there be an equilateral triangle on the complex

plane with vertices 

(a) 0 (b) 1 (c) 2 (d) 3

23. If 

PP

1 2 3,z z z . Let the circumcentre

of the triangle be 0z . If 0 0z  , find the value of

2 2 2
1 2 3

2
0

z z z

z

 

1 2,z z  are the roots of 2 0z az b    and 1 2,z z ,

origin be the vertices of an equilateral triangle then
2 3a b

(a) 0 (b) 1 (c) -1 (d) 2

24. The series 

 

0

cos

2n
n

n


 , when 

3


  , converges to

(a) 
1

4
(b) 

1

2
(c) 1     (d) None of these

25. If 2 1z   , then 
2 2 cosz z  , where   is

real is

(a) Less than 1 (b) 2 1

(c) 2 1 (d) None of these

26. The complex number 

2 3 3

3 0 1

3 1 4

i

Z i i

i

 

   

  
 is

(a) 3 4i (b) 5 4i

(c) 5i (d) A real number

27. If 

28. If  

  is a root of 5 3 3 0z z z    , then

(a) 1  (b) 1 

(c)  lies completely outside the unit circle

(d)  lies inside the unit circle 1z 

 2 min 1 , 5z z z     where z is a complex

number then

(a) 
3

Re( )
2

z   (b) 
7

Re( )
2

z 

(c) 
3 7

Re( ) ,
2 2

z
 

 
 

(d) None of these

29. If 

22.

23.

24.

25.

26.

27.

28.

29. 3,1ka k n   , then all the complex numbers

z satisfying the equation

it 2
1 2 .... 0n

na z a z a z   

(a) Lie out side the circle 
1

4
z 

(b) Lie inside the circle 
1

4
z 

(c) Lie on the circle 
1

4
z 

(d) Lie in 
1 1

3 2
z 

1. a 2. b 3. a 4. d 5. a
6. b 7. a 8. d 9. a 10. c
11. a 12. d 13. a 14. c 15. d
16. a 17. d 18. d 19. c 20. a
21. c 22. d 23. a 24. c 25. a
26. d 27. a 28. b 29. a

1. 2. 3. 4. 5.
6. 7. 8. 9. 10.
11. 12. 13. 14. 15.
16. 17. 18. 19. 20.
21. 22. 23. 24. 25.
26. 27. 28. 29.

1.Sol: We have, 1 2 3, 1,

2.Sol: Given that 

i i i i i      and 4 1i  ,

i.e., 4 1 4 5and ( )n ni i i i    

Now, 4 1( ) ( ) 0ni i i i    

1 2

1

i

i





2 2

(1 2 )(1 ) 1
(3 1)

21

i i
i

i

 
  



1 3

2 2
a ib i    

Now, 
1tan

b

a
   
  

 

      1tan ( 1) 

  Since a is negative, therefore   lies in second

quadrant.

3.Sol: Let 

1.Sol:

2.Sol:

3.Sol: iA i

log logA i i 

i.e., log logA i i 



8.Sol:

9.Sol:

10.Sol:
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2log log
i

A i e


 

log
2 2

A i i
 

   

2A e



 

4.Sol: Given that 
1 2

1 2

1
z z

z z






1

2

1

2

1

1

1

z

z

z

z



 



i.e., 

1

2

1

2

1

cos sin

1

z

z
i

z

z

 



 



1

2

2
1 cos sin

2 cos sin 1

z

z i

i

 

 

 
 

 

i.e.,  1

2

cot
2

z
i n

z


 

 
   

 

1

2

z

z
  is purely imaginary..

5.Sol: 1 2 1 23 3z z z z  

     1 2 1 2 1 2 1 23 3 3 3z z z z z z z z     

6.Sol: Given 
4

2z
z

 

we have 
4 4

z z
z z

   

i.e.,
4

2 z
z

 

2
2 4 0z z   

2 20

2
z


 

1 5z  

That is 5 1z   .

7.Sol: We have 1 2 1 2z z z z  

2 2(3 4 ) 5z i z   

i.e.,  2 2 (3 4 ) 5z z i   

  2 10z 

Now, 1 2 1 2z z z z  

                 12 10 

   1 2 2z z 

18

4.Sol:

5.Sol:

6.Sol:

7.Sol:

8.Sol:

9.Sol:

10.Sol:

 Given that 1 2,z z are purely real i.e., 
1 2,z z  also

real, 1 2,z z , 
1 2,z z  are on real line.

 Given that 1 2 and z z  are conjugate

i.e., 
2 1z z

Also, 3 4 and z z  are conjugate complex numbers.

i.e., 
4 3z z

Now, 
1 2 1 2

4 3 4 3

arg arg arg
z z z z

z z z z

      
       

      

1 1

33

arg
z z

zz

  
     

  

2

1

2

3

arg 0
z

z

 
  
 
 

 Method-1

Let iz re  . Then the equation becomes

2 2 0ir e r  

so either 20 or  1ir re   
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2 1 1ire r      and 2 2n   

putting ,r   values in z.

we get 0z   or ,z i i 

Method-2

Given that 2 0z z 

2z z  

2
z z z   

so,  2
1 0z z z z   

0, 1z z  

If 0z  . Then put into above equation

2 0 0 0z z   

If 1z  , Then put into above equation

2 1 0z z i     .

11.Sol: Given that 

12.Sol: Given that, 2

13.Sol: 3 2

Cis  is a solution of the equation

1 2

1 2 ..... 0
n nn x x

nx p p p
 

    

1 2 2

1 1 1
1 ..... 0n n

p p p
x x x

   
        

   

put x Cis

1 21 ( ) ( 2 ) ..... ( ) 0np Cis p Cis p Cis n         

We get,

1 2sin sin 2 ..... sin 0np p p n     

1 0z z  

1
1z

z
   

2

2

1
1z

z
   

Similarly 
3 4

3 4

1 1
2, 1z z

z z
     ,

5

5

1
1z

z
  

and

6

6

1
2z

z
 

Now, 

2 2 2

2 6

2 6

1 1 1
.....z z z

z z z

     
          

     

1 1 4 1 1 4     

12

1 1, 1 0x x x x     

1 3
1,

2

i
x

 
 

6 61 1 0x x   

3 3( 1) ( 1) 0x x   

  common roots are  + 1,

1 3 1 3
,

2 2

i i   

14.Sol: Given that  , is a non real roots of 6 1x 

i.e., 5 4 3 2( 1)( 1) 0x x x x x x      

5 4 3 2 1 0          

i.e., 5 3 2 21 ( 1)         

5 3
2

2

1

1

  




  
 



15.Sol: Given that 4 3 2

is 5.

16.Sol: If  1 2

11.Sol:

12.Sol:

13.Sol: 

14.Sol:

15.Sol: 

16.Sol:

( ) 1f x x x x x    

Therefore 5 20 15 10 5( ) 1f x x x x x    

we have 4 3 2 5(1 )( 1) 1x x x x x x      

 5 4 3 21 ( 1) 1x x x x x x       

1 ( 1) ( )x f x  

It should be noted that 5 1mod ( )nx f x .

Therefore, the remainder of  

20 15 10 5 1

( )

x x x x

f x

   

1, , ,...., n    are the roots of ( ) 0f x  ,

than 
1

'( ) 1

( )

n

i i

f x

f x x a






consider 5( ) 1f x x   here and using the above

property, we have

4

5
1 2 3 4

5 1 1 1 1 1

11

x

x x x x xx    
    

    

putting 2x  , we get



23.Sol:

24.Sol: 
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1 2 3 4

80 1 1 1 1 1

31 1 2 2 2 2   
    

   

1 2 3 4

1 1 1 1 80 31

2 2 2 2 31   


    

   

i.e., 
1 2 3 4

31 31 31 31
49

2 2 2 2   
   

   

17.Sol: Note that these z such that 24 1z   are 2

ni

e


for integer 0 24n  . So 6 2

ni

z e


 .

This is real if 
2

n
z  (n is even)

thus the answer is the number of even 0 24n 
which is 12
Method-2
from the fundamental theorem of algebra that

24 1z   must have 24 solutions or notice that the

question is simply referring to the 24th  roots of

unity of which we know there must be 24. Notice

that 24 6 41 (2 )z  , so for any solution 6,z z  will

be one of the 4th  roots of unity (1, , 1, or )i i  .

Then 6 solutions of z will satisfy 6 1,6z   will

satisfy 6 1z   , so there must be 12 such z.

18.Sol: Let z x iy 

Given 2 3 5z i  

( 2) ( 3) 5x i y    

2 2 2( 2) ( 3) 5x y    

19.Sol: Let ,z z iy iz y ix    

and ( ) ( )z iz x y i x y    

Then the area of the triangle formed by the vertices

( , ), ( , ), ( , )x y y x x y x y    is

1
50

2

x y x y x

y x x y y

 




2 2 2 2 2 21
50

2
x y xy y x xy xy y x xy         

2 21
50

2
x y  

2 2 100x y  

i.e., 10z 

20.Sol: Let a i    and z x iy  , then

0az az   becomes 0x y    or

y x




 
  
 

.

Its reflection in the x-axis is y x



  or

0x y  

0
2 2 2 2

a a z z a a z z

i i

        
       

     

0az a z  

21.Sol: Let z x iy 

Given that 
4

2
2

z i

z






i.e., 
( 4)

2
( 2)

x y i

x yi

 


 

2 2 2 2( 4) 4( 2)x y x y     

2 23 3 16 8 0x y x y    

22.Sol: The circumcentre of an equilateral triangle is
2 2 2
1 2 3 1 2 2 3 3 1z z z z z z z z z    

So, 

2 2 2
1 2 3

2
0

z z z

z

 

18

17.Sol:

18.Sol:

19.Sol:

20.Sol:

21.Sol:

22.Sol:

23.Sol:

24.Sol: 

1 2 2 3 3 1

2 2 2
1 2 3 1 2 2 3 3 42( )

z z z z z z

z z z z z z z z z

 


     3

 Given that 1 2,z z  are the roots of

2 0z az b    By using vieta’s theorem, we get

i.e., 1 2z z a    and 1 2z z b  also given that

1 20, ,z z  are vertices of an equilateral triangle

i.e., 2 2
1 2 1 2z z z z 

2
1 2 1 2( ) 3z z z z  

i.e., 2 3 0a b 

We have 

1 2

2
1 1 ...

2 2 2

i i ie e e  
 
     

 
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2

2

2
1 ...

2 cos sin 2 2

i ie e

i

 

 
    

 

2

2

2(2 cos sin )
1 ...

5 4cos 2 2

i ii e e  



 
   



Now equating the real parts we get

0

2(2 cos ) cos

5 4cos 2n
n

n 













put 23


 

0

1
2 2

cos2

1 25 4
2

n
n

n



 
 

  

 


0

cos
1

2n
n

n





25.Sol: Given that 

26.Sol:

2 1z  

Now, 
2 22 cos 2 cosz z z z   

             
2

2z z 

              2 1 2 2 2 2 2    

              1
2 2 cos 1z z   

2 3 3 2 3 3

3 0 1 3 0 1

3 1 4 3 1 4

i i

Z i i i i Z

i i

   

        

     

  Z is real.

27.Sol: We have 5 3 3 0     

i.e., 5 3 3     

Suppose 1 

5 35 33 1 1 1 3               

which is a contradiction      1 

 lies either on or outside the unit circle.

28.Sol: The given condition is

 2 min 1 , 5  there arises two cases:

Case-I

If 

Case-II

29.Sol: Given that 

z z z   

 min 1 , 5 1z z z   

then 2 1z z  

 
2 2

2 1z z   

i.e., ( 2)( 2) ( 1)( 1)z z z z    

2( ) 4 ( ) 1zz z z zz z z      

i.e., 3z z 

2Re( ) 3z 

3
Re( )

2
z 

 min 1 , 5 5z z z   

then 2 5z z  

2 2
2 5z z   

( 2)( 2) ( 5)( 5)z z z z     

3( ) 21z z  

3 2Re( ) 21z 

21 7
Re( )

6 2
z  

3,1ka k n  

1 23, 3,..... 3na a a   

Now, 2
2 21 .... 0n

na z a z a z    

2
1 2 ... 1n

na z a z a z    

i.e., 2
1 21 ... n

na z a z a z   

2

1 2 ...
n

na z a z a z  

i.e.,    2 2
1 3 .... 3 ....

n
z z z z z      

3
1

1

z

z
 



25.Sol:

26.Sol:

27.Sol:

28.Sol:

Case-I

Case-II

29.Sol:

1 3z z  

i.e., 
1

4
z 
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Basic Techniques:

1.

1.Sol:

 Cut and Paste

 Construct congruent and similar triangles

  Reflection about an angle bisector

18

Knowing the basic facts and important therorems
well is important for solving geometry problems,
but still insufficient. In fact, it is common to see
beginners who diligently learn many theorems, but
do not know how to apply those results and slove
geometry problems. Indeed, many beginners are
not aware of the commonly used technique (instead
of theorems), which are not found in most
textbooks.

The following is an elementary example: NO
advanced knowledge is required to solve this
problem. Can you see the clues without referring
to the solution?

Given a quadrilateral ABCD where AD BC  and

180BAC ACD    , show that B D  .

 If 90BAC ACD     , we have BAC

DCA   and hence, ABCD  is a

 parallelogram  and B D   .

Suppose 90BAC   . Let DC extended and AB

extended intersect at E. Since BAC ACD 

180  , we have BAC ECA    and AE = CE.

Choose F on the line CD such that AF AD . Wee

have D AFD   .  Now BC AD AF   gives

ABC CFA    (S.A.S.). It follows that B

AFD D    .

If 90BAC   , the lines AB and CD intersect at

the other side of AC and a similar argument applies.

Basic and commonly used techniques in solving
geometry problems include the following:

When given equal line segments, equal or
supplementary angles, and sum of angles or line
segments which are far apart, one may cut and
paste, moving those angles or line segments
together. This technique may give staright lines,
isosceles triangles or congruent triangles.

One strategy to show equal angles or line segments
is to place them in congruent or similar triangles.
If no such triangles exist in the diagram, consider
drawing auxiliary lines and construct one! Notice
that any other angles or line segments known to
be equal may give inspiration on which triangles
could be congruent or similar.

 

When given an angle bisector, it is naturally a line
of symmetry. Reflecting about the angle bisector
may bring angles and line segments together and
hence, it may be an effective technique besides
“cut and paste”.
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 Double the median

Refer to the diagram below. Given ABC  and its

median AD, extending AD to E with AD = DE

gives ABE  where BE AC and ABC = 180

A .

     

Hence, sin sinA ABE    and

[ ] [ ]ABC ABE   .

Moreover, (twice) the median of ABC  becomes

a side of ABE . This may be useful technique

when constructing congruent and similar traingles.

 Midpoints and Midpoint Theorem

When midpoints are given, it is natural to apply
the Midpoint Theorem, which not only gives
parallel lines, but also moves the (halved ) line
segments around. In particular, if connecting the
midpoints does not give a midline of the triangle,
one may choose more midpoints and draw the
midlines. Refer to the diagram below.

          

Given a quadrilateral ABCD where M, N are the
midpoints of AD, BC, respectively, simply
connecting MN  does not give any conclusion. If
we choose P, the midpoint of BD, then

1

2
PM AB  and 

1

2
PN CD .

If we know more about AB and CD, say AB = CD,

then we conclude that PMN  is an isosceles

triangle.

On the other hand, if midpoints  are given together
with right angled triangle, one may consider the
median on the hypotenuse.

 Angle bisector plus parallel lines

One may easily see an isosceles triangle from an
angle bisector plus parallel lines. Refer to the

diagram below. If AD bisects A , we have

1 2   .

If AC //BD, 2 3   . It follows that AB = CD.

Notice that this technique could also be applied
reversely. In the diagram above, if we know
AB = BD, then by showing AC // BD , we conclude

that AD bisects A .

  Similar triangles sharing a common vertex

A pair of similar triangles sharing a common vertex
may immediately give another pair of similar
triangles. Refer to the following diagrams where

 Double the median

 Midpoints and Midpoint Theorem

 Angle bisector plus parallel lines

  Similar triangles sharing a common vertex

' 'ABC AB C  .

Since 
' '

AB AC

AB AC
  and ' 'BAC B AC   , by

sbtracting 'B AC , we see that ' 'BAB CAC   .

It follows that ' 'ABB ACC  .

Notice that this technique applies for the inverse

as well. If we have ' 'ABB ACC  , we may also

conclude that ' 'ABC AB C  .
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  Angle-chasing

This is an elementary but effective technique when
we explore angles related to a circle, especially
when an incircle or circumcircle of a triangle is
given (because the incenter and circumcenter give
us even more equal angles). If more than one circle
is given, it is a basic technique to apply the angle
properties repeatedly and identify equal angles far
apart or apparently unrelated. Indeed, experienced
contestants are very familiar with the angle
properties and are sharp in observing and catching
equal angles.

However, one should avoid long-winded angle-
chasing which leads nowwhere. If that happens,
one may seek clues from the line segments instead,
say identifying similar triangles, or applying the
intersecting Chords Theorem and the Tangent
Theorem.

 Watch out for right angles

When right angles are given, it is worthwhile to
spend time and effort digging out more information
about them, because right angles may lead to a
number of approaches.

(1) If a right angled triangle with a height on the
hypotenuse is given, we will have similar
triangles.

(2) If there are other heights or the orthocenter of
a triangle, we may find parallel lines.

(3) One may see concyclicity when a few right
angles are given.

(4) If a right angle is extended on the circumference
of a circle, it corresponds to a diameter of the
circle.

One should always refer to the context of the
problem and determine which approach might be
effective.

 Perpendicular bisector of achord

Introducing a perpendicular from the center of a
circle to a chord is a simple technique but
occasionally, it may be decisively useful. Notice
that the perpendicular bisector gives both right

angles and the midpoint of the chord.

 Draw a line connecting the centers of two
intersecting circles

This is a very basic technique where the line
connecting the centers of the two circles is a line
of symmetry.

Refer to the diagram above. Notice that

1 2O O AB  and 1 2O O  is the angle bisector of both

1AO B  and 2AO B . Even though this is an

elementary result, one may apply it to solve
difficult problems.
It is noteworthy that beginners tend to overlook
this elemenatary property during problem solving,
especially when the diagram is complicated.

 Relay: Tangent Secant Theorem and
Intersecting Chords Theorem

When more than one circle is given and there is a
common chord or concurrency, one may apply the
Tangent Secant Theorem or the Intersecting Chords
Theorem repeatedly to acquire more concyclicity.
Refer to the diagrams below. Can you see C, D, E,
F are concyclic in both diagrams? can you see that

?PC PD PA PB PE PF    

     

18

  Angle-chasing

 Watch out for right angles

 Perpendicular bisector of achord

 Draw a line connecting the centers of two
intersecting circles

 Relay: Tangent Secant Theorem and
Intersecting Chords Theorem

Refer to the diagram below. If A, B, C, D are
concyclic, C, D, E, F are concyclic and E, F, G, H
are concyclic, can you see that A, B, G, H are

concyclic? (Hint: PA PB PC PD PE PF    

PG PH  .)
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We shall illustrate these techniques with more
examples in this section.

1. Given a quadrilateral ABCD, the external angle

bisectors of ,CAD CBD   intersect at P. Show

that if AD AC BC BD   , then

APD BPC   .

2. Given an acute angled triangle ,ABC AD  is the

angle bisector of ,A BE  is a median and CF is a

height. Show that AD, BE, CF are concurrent if
and only F lies on the perpendicular bisector of
AD.

3. Given a quadrilateral ABCD inscribed inside O ,

draw lines 1 2,l l  such that 1l  and the line AB is

symmetric about the angle bisector of CAD , and

2l  and the line AB is symmetric about the angle

bisector of CBD . If 1l  and 2l  intersect at M,

show that OM CD .

4. Let I be the incenter of ABC . M, N are the

midpoints of AB, AC respectively. NM extended

and CI extended intersect at P. Draw QP MN

at P such that QN // BI. Show that QI AC .

5. Let O, G denote the circumcenter and the centroid

of ABC  respectively. Let the perpendicular

bisectors of AG, BG, CG intersect mutually at D,
E, F respectively. Show that O is the centroid of

DEF .

6. Let 1 2 3, ,    be three circles such that 1 2, 

intersect at A and 2 3, ,P    intersect at C and P,,

and 

7. Let AB be the diameter of a semicircle centered at
O. Given two points C, D on the semicircle, BP is
tangent to the circle, intersecting CD extended at
P. If the line PO intersects CA extended and AD
extended at E, F respectively, show that OE = OF.

8. Given an acute angled triangle 

1. 

2.

3.

4. 

5.

6.

7.

8.

1 3,   intersect at B and P.

Refer to the following diagram. If AP extended

intersects 3  at D, BP extended intersects 2  at E

and CP extended intersects 1 at F, show that

1
AP BP CP

AD BE CF
   .

ABC  where AD,

BE, CF are heights, draw FP DE  at P. let Q be

the point on DE such that QA = QB. Show that

PAQ PBQ PFC    .

1.Sol: 



4.Sol: 

3.Sol:
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Extend  DB to C’ such that BC’ = BC and extend
CA to D’ such that AD = AD’. Can you see that C,
C’ are symmetric about the line PB, and D, D’ are

symmetric about the line PA? (Hint: 'BCC  is an

isosceles triangle and PB is the perpendicular
bisector of CC’) Now BC = BC’ and AD= AD’.
Refer to the right digram above. Can you see that

AD AC BC BD   implies ' 'CD C D ? Can

you see that PC = PC’, PD = PD’ and hence,

' 'PC D PCD   ?

Now ' 'C PD CPD    and the conclusion

follows.
2.Sol: By Ceva’s Theorem, AD, BE, CF are concurrent

if and only if 1
AF BD CE

BF CD AE
   . Since BE is a

median, it is equivalent to 

18

2.Sol: 

3.Sol:

4.Sol: 

AF CD

BF BD
 , or DF//AC.

We claim that DF // AC if and only AF = DF. In

fact, since AD bisects , //A DF AC  if and only if

ADF CAD BAD     , which is equivalent to

AF = DF .

In conclusion, AD, BE, CF are concurrent if and
only if  AF = DF , i.e., F lies on the perpendicular
bisecot of AD.

 Let P be the midpoint of CD . Clearly, AP, BP

are the angle bisectors of ,CAD CBD 

respectively.

Let 1l  and 2l  intersect O  at A, E and B, F

respectively. Since 1l  and AB are symmetric about

AP, we must have 180BAP EAP   ECP 
(because A,E,C,P are concyclic). (1)

Since P is the midpoint of CD , we have PCD

PAC  . (2)

(1) and (2) imply that BAP PAC ECP   

PCD , which gives BAC DCE   , i.e, BC

and DE  extend the same angle on the

circumference. This implies BC = DE and hence,
BCDE is an isosceles trapezium with BE//CD.

Since 2l  and AB are symmetric about BP, a similar

argument applies which gives AF // CD and ADCF
is an isosceles trapezium. Now it is easy to see
that AEBF is also an isosceles trapezium. Notice
that AM = MF and hence, OM is the perpendicular
bisector of AF. Since AF // CD. we must have

OM CD .

Since CI bisects C  and //BC MN , we have

NCP BCP NPC     , i.e., PN = CN. Since

N is the midpoint of AC, we have PN = AN = CN.

and hence, 90APC  

Since I is the incenter of ABC , we have AIC

1
90

2
ABC   and hence, 180AIP  

1
90 90

2
AIC ABC CBI      .

Notice that CBI PNQ   (because MN // BC

and BI // QN). Hence, 90AIP PNQ  

PQN  . Since 90APC QPN    , we must

have API NPQ  . Refer to the diagram below..

          

Now we have 
AP IP

PN PQ
  and QPI APN  .
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It follows that APN IPQ  .

Let QI extended intersect AC at D. We have CID

90PIQ PAC ACI      , i.e.,  CDI

90  . This completes the proof.

5.Sol: It is easy to see that D, E, F are the circumcenters

of , ,BCG ACG ABG    respectively. Let L, M,

N be the midpoints of BC, AC, AB respectively.
Notice that the lines DL, EM, FN are the perpen-
dicular bisectors of  BC, AC, AB  respectively and
hence, intersect at O. Let DL extended intersect
EF at P. We claim that P is the midpoint of EF.

Let AG intersect EF at Q. Since AG EF  and

, , , ,EM AC A E M Q  are concyclic and hence,

CAL OEP   . (1)

Since 180CLO CMO    , we also have C,

L, O, M concyclic and hence, ACL EOP   .

(2)

(1) and (2) give ACL EOP   ane hence,

EP OP

AL CL
 . (3)

Similarly, one sees that ABL FOP  and hence,

FP OP

AL BL
 . (4)

   

(3) and (4) imply EP = FP, i.e., DO extended
through the midpoint of  EF. Similarly, EO

extended and FO extended pass through the
midpoints of DF and DE respectively. We conclude

that O is the centroid of DEF .

6.Sol: Let 

5.Sol: 

6.Sol: 1 2 3, ,O O O  denote the centers of 1 2 3, ,  

respectively. Let 1 2O O  intersect AP at M. Clearly,,

     AM = PM. Draw 3O DP  at H.

It is easy to see that DH = PH. Hence,

     
1

2
MH 

1
( )

2
AP DP AD  .

Now 
1 2

1 2

1
[ ]2

1 [ ]

2

AP
O O PAP PM

AD HM O O HAD


  



Notice that 1 2 1 2 3 1 2

1
[ ] [ ]

2
OO H OO O OO MH     ,

because 1 2O O AD  and 3O H AD , i.e.,

1 2 3//O O O H . It follows that 
1 2

1 2 3

[ ]

[ ]

O O PAP

AD O O O



 .

Similary, 
1 3

1 2 3

[ ]

[ ]

O O PBP

BE O O O



  and

          
2 3

1 2 3

[ ]

[ ]

O O PCP

CF O O O



  .

Refer to the diagram below.

The conclusion follows as

      
1 2 1 3 2 3

1 2 3

[ ] [ ] [ ]
1

[ ]

O O P O O P O O P

O O O

    



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7.Sol: Draw OM CD  at  M. We have CM = DM.

Since BP AB , we have B, O, M, P concyclic

and hence, BMP BOP AOE     . (1)

Since A, B, D, C are concyclic, we have BDC

BAE  . (2)

(1) and (2) imply that BDM EAO  and hence,

AE BD

AO DM
 . Refer to the following diagram.

Since O and M are midpoints of AB, CD
respectively, we have

2 2

AE AE BD BD

AB AO DM CD
    (3)

       

18

7.Sol: 

8.Sol: 

(2) and (3) imply that BDC EAB  . Hence,

BCD BAD   , we must have BAD ABE  .

One see that AOF BOE    (A.A.S.) and hence,

OE = OF.
Clearly, Q lies on the perpendicular bisector of

AB. Let M be the midpoint of AB. We must have

QM AB . Since FP DE , F, M, Q, P are

concyclic. Let the lines AB and DE intersect at X.

By the Tangent Secant Theorem, XP XQ

XF XM   (1)

It is well known that A, B, D, E are concyclic and

hence, we have XA XB XD XE    (2).

Notice that D, E, F, M are concyclic because they

lie on the nine-point circle of ABC .

Hence, XD XE XF XM   (3).

              

Refer to the diagram above.

(1), (2) and (3) give XA XB XP XQ   .

Hence, A, B, Q, P are concyclic and PAQ

PBQ  .

Let H denote the orthocenter of ABC . Consider

the right angled triangle FHX . Since FP HX ,

we have PFC X   . Refer to the left digram

below. If suffices to show X PAQ   .

     

      

Notice that X PAB APX    , where APX

ABQ BAQ   . Ii follows that X PAB 

BAQ PAQ   . Refer to the right diagram

above. This complete the proof.
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                      (Triangles & Circles)

1. Suppose BC is a given line segment in the plane
and T is a scalene triangle. The number of points A
in the plane such that the triangle with vertices
A,B,C (in some order) is similar to triangle  T is
(a) 4 (b) 6 (c) 12 (d) 24

2. Consider four triangles having sides (5,12,9),
(5,12,11), (5,12,13) and (5,12,15). Among these,
the triangle having maximum area has sides
(a) (5,12,9) (b) (5,12,11)
(c) (5,12,13) (d) (5,12,15)

3. Suppose we have two circles of radius 2 each in
the plane such that the distance between their

centres is 2 3 . The area of the region common to

both circles lies between
(a) 0.5 and 0.6 (b) 0.65 and 0.7
(c) 0.7 and 0.75 (d) 0.8 and 0.9

4. Let 1 2,C C  be two circles touching each other

externally at the point A and let AB be the diameter

of circle 1C . Draw a secant 3BA  to circle 2C ,

intersecting circle 1C  at a point 1 ( )A A , and circle

2C  at points 2A  and 3A . If 1 22, 3BA BA   and

3 4BA  , then the radii of circles 1C  and 2C  are

respectively

(a) 
30 3 30

,
5 10

(b) 
5 7 5

,
2 10

(c) 
6 6

,
2 2

(d) 
10 17 10

,
3 30

5. The points A, B, C, D, E are marked on the
circumference of a circle in clockwise direction

such that 130ABC    and 110CDE   . The

measure of ACE  in degree is

(a) 50 (b) 60 (c) 70 (d) 80
6. Three circles of radii 1, 2 and 3 units respectively

touch each other externally in the plane. The
circumradius of the triangle formed by joining the
centres of the circles is
(a) 1.5 (b) 2 (c) 2.5 (d) 3

7. Let P be a point inside a triangle ABC with

90ABC   . Let 1P  and 2P  be the images of P

under reflection in AB and BC respectively. The
distance between the circumcentres of triangles

ABC and 1 2P P P  is

(a) 
2

AB
(b) 

3

AP BP CP 

(c) 
2

AC
(d) 

2

AB BC AC 

8. Let a and b be two positive real numbers such that

9. Consider a semicircle of radius 1 unit constructed
on the diameter AB,  and let O be its centre. Let C
be a point on AO such that AC : CO = 2 : 1, Draw
CD perpendicular to AO with D on the semicircle.
Draw OE perpendicular to AD with E on AD. Let
OE and CD intersects at H. Then DH equals

                      (Triangles & Circles)

1.

2. 

3.

4.

5. 

6.

7. 

8. 

9.

2 1a b  . Let 1A  and 2A  be, respectively, the

areas of circles with radii ab  and 2b . Then the

maximum possible value of 
1

2

A

A  is

(a) 
1

16
(b) 

1

64
(c) 

1

16 2
(d) 

1

32

GEOMETRY (PART-1)
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(a) 
1

5
(b) 

1

3

(c) 
1

2
(d) 

5 1

2



10. In a triangle ABC, points X and Y are on AB and
AC, respectively, such that XY is parallel to BC.
Which of the two following equalities always
hold?  (Here [PQR] denotes the area of triangle
PQR)
I. [BCX] = [BCY]
II. [ACX]. [ABY]= [AXY] . [ABC]
(a) Neither I nor II (b) I only
(c) II only (d) Both I and II only

11. Let P be an interior point of a triangle ABC. Let Q
and R be the reflections of P in AB and AC,

respectively. If Q, A, R are collinear then A
equals

(a) 30 (b) 60 (c) 90 (d) 120

12. Let ABCD be a square of side length 1, and I  a
circle passing through B and C, and touching AD.

The radius of I 

(a) 
3

8
(b) 

1

2
(c) 

1

2
(d) 

5

8

13. A semi-circle of diameter 1 unit sits at the top of a
semi-circle of diameter 2 units. The shaded region
inside the smaller semi-circle but outside the larger
semi-circle is called a lune. The area of the lune is

(a) 
3

6 4


 (b) 

3

4 24




(c) 
3

4 12


 (d) 

3

4 8




14. The angle bisectors BD and CE of a triangle ABC
are divided by the incentre I in the ratios 3 : 2 and
2 : 1 respectively. Then the ratio in which I divides
the angle bisector through A is
(a) 3 : 1 (b) 11 : 4 (c) 6 : 5 (d) 7 : 4

15. Suppose 1S  and 2S  are two unequal circles; AB

and CD are the direct common tangents to these

circles. A transverse common tangent PQ cuts AB
in R and CD in S. If AB = 10, then RS is

(a) 8 (b) 9 (c) 10 (d) 11
16. On the circle with center O, points A, B are such

that OA = AB. A point C is located on the tangent
at B to the circle such that A and C are on the
opposite sides of the line OB and AB = BC. The
line segment AC intersects the circle again at F.

Then the ratio :BOF BOC   is equal to

            

(a) 1 : 2 (b) 2 : 3 (c) 3 : 4 (d) 4 : 5

17. In a triangle ABC with 90A   , P is a point on

BC such that PA : PB = 3 : 4. If 7AB   and

5AC   then BP : PC is

(a) 2 : 1 (b) 4 : 3 (c) 4 : 5 (c) 8 : 7
18. The numberof values of b for which there is an

isosceles triangle with sides of length b + 5, 3b - 2
and 6 - b is
(a) 0 (b) 1 (c) 2 (d) 3

19. In a triangle ABC with A B C     , points D,

E, F are on the interior of segments BC, CA, AB,
respectively. Which of the following triangles
CANNOT be similar to ABC?
(a) Triangle ABD (b) Triangle BCE
(c) Triangle CAF (d) Triangle DEF

20. Tangents to a circle at points P and Q on the circle
intersect at a point R. If PQ = 6 and PR = 5 then
the radius of the circle is

(a) 

18

10.

11.

12. 

13. 

14.

15. 

16. 

17.

18. 

19. 

20. 

21.

13

3
(b) 4 (c) 

15

4
(d) 

16

5

In an acute-angled triangle ABC, the altitudes from
A, B, C when extended intersect the circumcircle
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again at points 1 1 1, ,A B C , respectively. If ABC

45   then 1 1 1A B C  equals

(a) 45 (b) 60 (c) 90 (d) 135
22. The sides of a triangle are distinct positive integers

in an arithmetic progression. If the smallest side is
10, the number of such triangles is
(a) 8 (b) 9
(c) 10 (d) Infinitely many

23. In triangle ABC, let AD, BE and CF be the intenal
angle bisectors with D, E and F on the sides BC,
CA and AB respectively. Suppose AD, BE and CF

concur at I and B, D, I, F are concyclic, then IFD
has measure

(a) 15 (b) 30

(c) 45

24. A circle is drawn in a sector of a larger circle of
radius r, as shown in the adjacent figure. The
smaller circle is tangent to the two bounding radii
and the arc of the sector. The radius of the small
circle is

25. Suppose Q is a point on the circle with centre P
and radius 1, as shown in the figure; R is a point

outside the circle such that QR = 1 and

26. In a triangle ABC, it is known that 

27. Let ABC be a triangle with 

28. In the adjoining figure 

 (d) Any value 90 

(a) 
2

r
(b) 

3

r
(c) 

2 3

5

r
(d) 

2

r

QRP

2  . Let S be the point where the segment RP

intersects the given circle. Then measure of

RQS equals

               

(a) 86 (b) 87 (c) 88 (d) 89

AB AC ,

Suppose D is the mid-point of AC and BD BC

2 . Then the area of the triangle ABC is

(a) 2 (b) 2 2 (c) 7 (d) 2 7

90B   . Let AD be

the bisector of A  with D on  BC. Suppose AC

=6 cm and the area of the triangle ADC is 210 cm .

Then the length of BD in cm is equal to

(a) 
3

5
(b) 

3

10
(c) 

5

3
(d) 

10

3

12 , 8AB cm CD cm  ,

20BD cm ; 90ABD AEC EDC       . If

BE x , then

       

(a) x has two possible values whose difference is
4

(b) x has two possible values whose sum is 28

(c) x has only one value and 12x 
(d) x cannot be determined with the given

information
29. The sides of a triangle ABC  are positive integers.

The smallest side has length 1. Which of the
following statement is true?
(a) The area of ABC is always a rational number
(b) The area of ABC is always an irrational number
(c) The perimeter of ABC is an even integer
(d) The information provided is not sufficient to

conclude any of the statements A, B or C above
30. In a triangle ABC, D and E are points on AB, AC

respectively such that DE is parallel to BC.
Suppose BE, CD intersect at O. If the areas of the
triangles ADE and ODE are 3 and 1 respectively,
find the area of the triangle ABC, with justification

1. c 2. c 3. c 4. a 5. b
6. c 7. c 8. b 9. c 10. d
11. c 12. d 13. b 14. b 15. c
16. b 17. a 18. c 19. a 20. c
21. c 22. b 23. b 24. b 25. d
26. c 27. d 28. a 29. b 30. 12

22. 

23.

24. 

25. 

26.

27.

28. 

29. 

30.

1. 2. 3. 4. 5. 
6. 7. 8. 9. 10.
11. 12. 13. 14. 15.
16. 17. 18. 19. 20.
21. 22. 23. 24. 25.
26. 27. 28. 29. 30.
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1.Sol:  We know similar triangles are equiangular. That
is corresponding angles are equal.

Given a line segment, where we need to construct
a triangle.
That is, we need to choose a pair of angles from 3
angles of another triangle to construct a similar
triangle using this line segment. This can be done

in 
2

3 2!C  ways. That is, there are 12 similar

triangles.
2.Sol: We can easily find the maximum area of the

given triangles using Heron’s area formula. That
is, the triangle (5, 12, 13) has Maximum area.

3.Sol: 

4.Sol: 

From the diagram, we can see  that, the area of
required curve is 2 times of Area of sector ADC -
Area of Rhombus

i.e., 
21 4

2 2 2 3 2 3
2 3 3


     

                   
4 22

2 3
3 7

  

                   4 190 2(1 732)   

                   0 726 

Given that

1 2 1BA BM  

and 2 1 23 1BA A A  

and 3 2

1 7
4

2 2
BA A N BN    

Let 1r  be the radius of circle 1' 'c  and 2r  be the

radius of circle 2' 'c .

from the diagram, we see that

QNB  and PMB  are simillar, since AA

corollary.

i.e., 
BM PM

BN QN



1

7/2

PM

QN


i.e.,  
2

7

PM

QN


Now, we have 2
1 1PM r   and 

2
2

1

4
QN r 

       

2
1

2
2

1 2

1 7

4

r

r






i.e.,  2 2
1 249 49 4 1r r  

2 2
1 249 4 48r r                                 (1)

and we have from QNB

2 2 2BQ BN NQ 

i.e., 
2 2

1 2 2

49 1
(2 )

4 4
r r r   

           2
1 1 2 3r r r                         (2)

Solving (1) and (2), we get

1

6

5
r    and 2

3 30

10
r 

5.Sol:

6.Sol: The traingle in question has side lengths 1 + 2
= 3, 1 + 3 = 4 and 2 + 3 = 5, and is thus a right
triangle. The circum radius of a right triangle is
one half the length of the hypotenuse, and so in

this case is 

1.Sol:

2.Sol: 

3.Sol: 

4.Sol: 

5.Sol:

6.Sol: 

1
5 2 5

2
   .
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7.Sol: 

M is circumcentre of ABC

     Co-ordinate of M is ,
2 2

a b 
 
 

  and N is

circumcentre of 1 2PPP

(0,0)N B  (Mid-point of 1P  and 2P ).

2

AC
MN 

8.Sol: We have
2 2

1A a b

and 4
2A b


2 21

2

A
a b

A


Given that 2 1a b 

i.e., 2 1a b 

Using  AM - GM Inequality,
We get

 1/22
2

2

a b
ab




i.e., 2 2 2a b ab 

i.e., 2 2 1ab 

2 2 1

64
a b 

9.Sol:  

 From ,AOD E  is a mid point of .AD  Since

AOD  is isosceles triangle.

now from ,CDO  we have

1
cos 2

3
 


2 1

2cos 1
3

  

i.e.,
2

cos
3

 


2 1

sin 1
3 3

   

 sinED  

i.e.,
1

3
ED 

now from ,HDE  we have

secDH ED 

i.e.,
1 3 1

3 2 2
DH   

10.Sol: 

7.Sol: 

8.Sol: 

9.Sol: 

10.Sol: 

Clearly ar (BCX) = ar (BCY) { s between parallel

lines & same bae}

 [ ] [ ]BCX BCY

(I) is true

(II) 
1

( ) sin
2

ar ACX AC AX A  

1
( ) sin

2
ar ABY AB AY A  

1
( ) sin

2
ar AXY AX AY A  

1
( ) sin

2
ar ABC AB AC A  
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13.Sol:  

18

Clearly [ ] [ ] [ ] [ ]ACX ABY AXY ABC  

(II) is true.

11.Sol: 

We have

90 90QAR     

But 180QAR 

i.e.,  180 180    

    

But from ,PQR we have

90   

i.e. 90 

12.Sol:  

Let O be centre of circle.

  radiusOM r 

Now,

2

2 2 1
(1 )

2
r r

 
    

 

        
5

2
4

r 

         8 5r 

            
5

8
r 

We can see from the diagram, that area of the line
is difference between area of semi circle ACB and
area of segment ADB

now area of segment ADB = Area of sector ADB

i.e.,    2 260 3
1 1

360 4


  



3

6 4


 

  desired area is 

2
1 3

2 2 6 4

   
        

=
3

8 6 4 24

  
  

14.Sol: 

we have,  I divides BD in the ratio :c a b and CE

in the ratio :a b c

i.e., 
3

2

c a

b


  and 

2

1

a b

c




2 2 3c a b   and 2a b c 

i.e., solving above equations, we get 3 2a b

2
23
1

b
b

c


 

i.e., 5b = 6c

2 5

3 6

b b
a and c  

now, we know I divides AF in the ratio :b c a

i.e., 

18

11.Sol: 

12.Sol:  

13.Sol:  

14.Sol: 

5 2
;

6 3

b b
b 

11 4
:

6 6

b b


i.e., 11:4
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15.Sol:

We know PS CS y  and

,BR RQ x  Since tangents drawn from external

point are equal in length.

We know 10AR PQ x   and 10 2PQ x 

Now CD CS SD y SP PQ    

            10 10 2y y x   

 y x

 RS SP PQ QR  

  

10 2

10

10

y x x

y x  



16.Sol: 

   

Given OA = AB

OB AB 

      OAB is equilateral

We have ABC  we have

180BAC ABC BAC   

i.e., 150 180BCA BCA  

30BCA 

15BCA  

We know OBC is isosceles [Since OB = BC]

       45 30BOC and BOF     

       Now 
30 2

45 3

BOF

BOC

 
 

 

17.Sol: 

Given that 3PA x and 4PB x

Let ABC   and PAB  
Then

15.Sol:

16.Sol: 

17.Sol: 

5 5
tan sin ;

7 12
   

Now, we have sine rule in APB

i.e.,
3 4 7

sin sin sin(180 ( ))

x x

   
 

 


4 4 5 20

sin sin
3 3 12 27

    

        
7

cos
27

 

Now from ,APB we have sine rule

i.e.,  
3 7

sin sin

x


 

and   3 sin( ) 7 sinx    

i.e.,  
7 7 20

3 7
27 6 27

x
 

   
 

       
1

3 1
3

x 

     
1

3
x 
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4

12 4

BP x

PC x
 



4

23 2
4 112
3

  



18.Sol: The triangle in which we have lengths of any
two sides equal is called are isosceles triangle. So
here we are given length of an isosceles triangle

5,3 2,6b b b  

The possible equal sides are either 5 3 2b and b 

or 3 2 6b and b   or 5 6b and b 

Case (I)
The possible isosceles triangle with equal side

lengths i.e. 5 3 2b b  

          
7

2
b 

Now the length od sides of the triangles are 8.5,
8.5, 2.5. So triangle is possible with these
measurements

Case (II)
The possible isosecles triangle with equal sides

lengths of 3 2 6b and b 

i.e. 3 2 6b b  

i.e. 2b 

Noe the length of sides of the triangle are 7, 4, 4.
So triangle is possible with these measurements

Case (III)
The possible isosceles triangle with equal side

length of 5 6b and b 

i.e. 3 2 6b b  

5 6b b  
1

0.5
2

b  

Now the length of sides of the triangle 5.5, -0.5,
5.5, which is not possible as the length cannot be
negative.
Hence possible values of b are 3,5,2.
These are 2 possible values.

19.Sol: 

We have BDA DBC C   

BDA C  

ABD
20.Sol:

cannot be Similar to ABC

We have RPC and POC  are Simillar. That is

RP PC RC

PO OC PC
 

RP RC

PO PC
 

i.e.
5 4

3r


15

4
r 

21.Sol:

18

18.Sol: 

19.Sol: 

20.Sol:

21.Sol:

We have ,AD BC BE AC and CF AB  

and 45ABC  

In ABD

180BAD ABD ADB    

180 135BAD     

i.e., 45BAD  

1 45BAD BAA             (1)
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Also, in BCF

180BCF BFC CBF    

i.e., 180 135BCF    

45

1 45BCF BCC             (2)

As, 1 1 1BB A BAA   [Angles on the same arc are

equal]

  1 1 45BB A  

Also 1 1 1BB C BCC  

1 1 45BB A  

Now, 1 1 1 1 1 1 1A B C BB A BB C   

     45 45  

1 1 1 90A B C 

22.Sol:

     



Given  a, b, c are in AP  (criteria to form any
triangle)

 10, 10 , 10 2d d 

using triangular inequality, we get

a b c 

        20 10 2d d  

        10 d

As the d is minimum, Hence total possibility of d
is 9

23.Sol:



180
2

A C
AIC

 
   

 

Given that BDIF is concyclec

i.e. 180B DIF  

180DIF B   
and we know, vertically opposite angle are equal.
that is

DIF AIC  

180 90
2

B
B


  

3 90
2

B
 

i.e. 3 90
2

B
 

  This will be case of equilateral triangle

30IFD 

24.Sol:

25.Sol: 



Let the radius of smaller circle be x
Here,

In OAP

we have cosec30
OP

x
 

 cosec 30OP x 

and   cosec30OQ r x x   


3

r
x 

22.Sol:

     

23.Sol:

24.Sol:

25.Sol: 

using  Cosine rule, we have
2( ) 2 2cos 2QS   
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26.Sol: 

29.Sol:

 2sin1QS  

Now by sine rule in RQS ,We have


sin 2

sin
2sin1







 89  

 180 (2 89 ) 89RQS      

Given that

; 2AB BC AD DC and BD BC   

We have Apollonius theorem,

i.e.  2 2 2 22AB BC CD BD  

2
2 4 2 4

4

x
x

 
    

 

i.e., 
2

2 8 4
2

x
x   

2

4
2

x
 

8x 

Now area of ABC is

   s s a s b s c  

i.e.,      8 1 1 1 8 1 

8 1 7   Sq.unit

27. Sol:  

Let P be the length of BD.
We have angle bisector theorem

i.e.
6 2

P




 6qr p         (1)

Now Area of 
1

( ) ( )
2

ADC DC AB 


1

10 ( ) ( )
2

q r

 20qr          (2)

Solving (1) and (2) ,

20 6p

  
20 10

6 3
p  

28.Sol:
Given that AB = 12 cm, CD = 8 cm, CD = 8 cm,
BD = 2 cm, and

90ABD AEC EDC      

We have ABC EDC  

i.e.
12 20

8

x

x




 2 20 96 0x x  

 8,12x 

18

26.Sol: 

27. Sol:  

28.Sol:

29.Sol:

Let the smallest side be a = 1
Using triangular inequality,
we get

1 1b c b c     

and
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1 1c b b c    

 1 1b c   

given that b, c are integers so 0b c b c   

Now, semiperimeter (s) 
2 1 1

2 2

b
b


  

  Area

1 1 1 1
1

2 2 2 2
b b b b c b
    

           
    

21 1
Irrational

2 4
b is  

30.Sol: We denote the area of triangle PQR by [PQR]
. We see that [BOD] and [COE] are equal. Let the
common value be x, and let [BOC] = t. Using the
fact that the ratio of areas of two triangles having
equal altitudes is the same as the ratio of their
respective bases, we obtain.

30.Sol: 

1

x BO t

OE x
 

         

This gives 2t x . Now ADE and ABC are similar

so that

2

2

[ ] [ ]

[ ] [ ]

ADE DE ODE

ABC OBCBC
 

since ODE and OCB are also similar. This implies
that

       
3 1

4 2x t t


 

which simplifies to 2t x  , using 2t x  we get

a quadratic in 2: 2 0x x x   . Its solution are

2x   and 1x   . Since x cannot be negative, x

= 2 and t = 4. Thus [ ] 4 2 4 4 4ABC x t     

12 .

Workshops and Enrichment Programs

Parents / Educators
In today’s competitive environment, developing problem-solving and critical thinking skills has become
more important than ever. Let we help hone your student’s abilities to apply powerful techniques to
some of the most engaging problems. Go beyond the core standards and explore the areas of Number
Theory, Counting and Probability, Geometry, and Algebra, all through the exciting vehicle of
competition math. Whether studying for competitions such as Maths Olympiads, regional contests or
simply wanting to delve into some beautiful problems to increase your problem-solving skills, we
can help you get started on your path.

We provide various enrichment resources to the needy.

Institutions and Managements can contact for details:
Dhananjayareddy Thanakanti;
Mobile: 7338286662;
Email: dhananjayareddyt@outlook.com
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Introduction
Both determinants and matrices were introduced
as mathematical short hand while studying

system of linear equalities, let 1 1 0a x b y   and

2 2 0a x b y   be the two homogeneous linear

equations.

Multiplying the first equation by 2b , the second

by 1b , substracting and dividing by x , then

1 2 2 1 0a b a b   which is some times written as

1 1

2 2

0
a b

a b
  

The expression on the left is called determinant

and it is denoted by  . This is second order
because  it has two rows and two columns. The

letter 1 1 2 2, , ,a b a b  are called the elements of the

determinant. The value   of

1 1

1 2 2 1

2 2

a b
a b a b

a b
  .

A determinant which consists of 3 rows and 3
columns is called third order and the

2

2

2

1

1 ( )( )( )

1

a a

b b a b b c c a

c c

   

 
3 3 3

1 1 1

( )( )( )( )a b c a b b c c a a b c

a b c

     

1 1 1

2 2 2 2 2 2

2 2 2 1 1 1

3 3 3 3 3 3

3 3 3

a b c
b c a c a b

a b c a b c
b c a c a b

a b c

    

      1 2 3 3 2 1 2 3 3 2 1 2 3 3 3a b c b c b a c a c c a b a b     

 A determinant can be expand  with respect to any
row(column), the value will be the same.

Minor & Cofactor of an Element of  a
Determinant

Let [ ]ijA a  be a square matrix, then

 The minor of the ija of | |A  is the value of the

determinant obtained by deleting its t hi  row and
thj  column and it is denoted by ijM

 The cofactor of the element ija of | |A is denoted

by the corresponding capital letter ijC  and

1( 1)i
ij ijC M  .

Properties of Determinants

  

Introduction



Minor & Cofactor of an Element of  a
Determinant





Properties of Determinants





31 1 1 1 2

2 2 2 1 2 3

3 3 3 1 2 3

aa b c a a

a b c b b b

a b c c c c


,

i.e., det( ) detTA A

If  you change two rows (columns) of a matrix
you reverse the sign of its determinant from
positive to negative or from negative to
positive.

DETERMINANTS
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1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

a b c b a c b c a

a b c b a c b c a

a b c b a c b c a

  

  

2 2 2 2 2 2

1 1 1 3 3 3

3 3 3 1 1 1

a b c a b c

a b c a b c

a b c a b c

  

 If A has a row (column) that is called zeros, then

det 0A  .

1 1 1 1 1

2 2 2 2 2

3 3

0

0 0

0 0 0 0

a c a b c

A a c a b c

a c

  

  If two rows (columns) of a matrix are equal, its
determinant is zero.

1 1 1 1 1 1

2 2 2 1 1 1

3 3 3 3 3 3

0

a a c a b c

a a c a b c

a a c a b c

 



 The determinant behaves like a linear function on
     the rows (columns)

31 2

1 2 3

aa a

b b b
  , then 

1 1 1

2 2 2

3 3 3

0

a b c

a b c

a b c



1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

a x b c a b c

a x b c a b c

a x b c a b c



 



1 1 1

2 2 2

3 3 3

x b c

x b c

x b c



 If we multiply one row of a matrix by p, the
determinant is multiplied by p.

        



1 1 1 1 1 1

 If the order of  A is n, then

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

pa b c a b c

pa b c p a b c

pa b c a b c



1 1 1

2 2 2

3 3 3

a b c

pa pb pc

a b c



 and

1 1 1 1 1 1

3
2 2 2 2 2 2

3 3 3 3 3 3

pa pb pc a b c

pa pb pc p a b c

pa pb pc a b c



2 2 2 2 2 2

3 3 3 3 3 3

pa pb pc a b c

pa pb pc p a b c

pa pb pc a b c

   
      
      

det( ) det( )nA A 

 The determinant of a triangular matrix is the

product of the diagonal entries 1 2, ,..., nd d d .

 The determinant of a permutation matrix A is 1 or
depending on whether A exchanges an even or odd
number of rows (columns).



  If any line of a determinant 

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

a b c a b b c

a b c a b b c

a b c a b b c









 



2 3 1

1 1 1

2 2 2

3 3 3

C C C

x y z

x y z

x y z

  

 
 

 
  

     

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

x y z y z

x y z y z

x y z y z

 

 

 

  
   
   

  be passed over p

parallel lines, the resultant determinant is

( 1) p  .

 When the elements of  a determinant   are
rational integral functions of x (polynomials) and
two rows or columns become identical when

x a , then ( )x a  is a factor of  . If r  rows

become identical when a is substituted for x , then
1( )rx a   is a factor of  .

 Differentiation of determinant 



  























1 1 1

2 2 2

3 3 3

f g h

f g h

f g h

 
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where , ,r r rf g h  are functions of  x  for 1, 2,3r  .

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

' ' '

' ' '

' ' '

f g h f g h f g h
d

f g h f g h f g h
dx

f g h f g h f g h


   

Optimal value of Determinants when
Elements are known

If

1 2 3

4 5 6

7 8 9

a a a

A a a a

a a a


w h e r e 1 2' { , ,..., },i na s   

then 
max

A  when diagonal elements are

1 2min{ , ,..., }n    and non-diagonal elements are

1 2 3max{ , , ,..., }n     and also 
min max

A A  .

Multiplication of Determinants
Definition:

Let 
11 12 11 12

21 22 21 22

,
a a b b

A B
a a b b

  . Then

11 12 11 12

21 22 21 22

a a b b
A B

a a b b


   
11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

a b a b a b a b

a b a b a b a b

 


 

Theorem

(1) det( ) (det )(det )AB A B  i.e., AB A B

(2)    A BC AB C ; N.B

; ( ) ( )A BC AB C

(3) A B B A ; N.B; AB BA  in general

(4)  A B C A B A C  

Definition: Let 

1311 12

21 22 23

31 32 33

aa a

A a a a

a a a

 
 

  
 
 

, then ijA , the

cofactor of ija , is defined by

2322 21 23

11 12

31 3332 33

, ,...,
aa a a

C C
a aa a

  11 12

33

21 22

a a
C

a a

Since

12 13 11 13

21 22

32 33 31 33

a a a a
A a a

a a a a
   11 12

23

31 32

a a
a

a a


21 21 22 22 23 23a C a C a C  

Theorem

(1) 1 1 2 2 3 3

det

0
i j i j i j

A if i j
a C a C a C

if i j


   



(2) 1 1 2 2 3 3

det

0
i j i j i j

A if i j
a C a C a C

if i j


   



Inverse of Square Matrix by
Determinants
Definition: The cofactor matrix of A is defined as

             

1311 12

21 22 23

31 32 33

CC C

cofA C C C

C C C

 
 

  
 
 

Definition: The adjoint matrix of A is defined as

   

3111 21

21 22 32

13 23 33

( )T

CC C

adjA cofA C C C

C C C

 
 

   
 
 

Theorem: For any square matrix A of order n.

                ( ) ( ) (det ) A adj A adj A A A I

   

1 111 12 11 21

21 22 2 12 22 2

1 2 1 2

( )

n n

n n

n n n nnn nn

a Ca a C C

a a a C C C
A adj A

a a C Ca C

  
  
  
  
    
  

 

 

  

 

Theorem: Let A be a square matrix. If det 0A  ,

then A is non - singular and 

18

Optimal value of Determinants when
Elements are known

Multiplication of Determinants
Definition:

Theorem

Definition:

Theorem

Inverse of Square Matrix by
Determinants
Definition:

Definition:

Theorem:

Theorem:

Theorem:

1 1
( )

det
A adjA

A
  .

 A square matrix A is non-singular iff

det 0A  .
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  A is singular (non-invertible) iff 1A does not exist.
Theorem: A square matrix A is singular iff

det 0A  .

Properties of inverse matrix
Let A, B be two non - singular matrices of the same

order and   be a scalar..


1 11

( )A A


 

 1 1( )

 1 1

A A  

( ) ( )T TA A 

 1 1( ) ( )n nA A   for any positive integer n.

 1 1 1( )AB B A  

 The inverse of a  square matrix is unique.



  0XY  

 If  A  is non - singular, then

   10 ( ) ( )

 XY XZ 

 1 1

1 1
det( )

det( )
A

A
 

0X   or 0Y 

   1 ( ) 0A AX 

AX A AX AO I X O X O      

0X   or Y Z

AX AY A AX A AY   
 If A is non-singular, then

1 1

 1 1 1 1

AX AY A AX A AY X Y     

( ) ( )( )( )nA MA A MA A MA A MA    

        1 1( )......( )nA MA A M A 

  If 

  If 

0 0

0 0

0 0

a

M b

c

 
 

  
 
 

, then

1

1 1

1

0 0

0 0

0 0

a

M b

c



 



 
 

  
 
 

0 0

0 0

0 0

a

M b

c

 
 

  
 
 

, then  

0 0

0 0

0 0

n

n n

n

a

M b

c

 
 

  
 
 

,

where 0n  .

Sarrus Rule for Expansion
Sarrus gave a rule for a determinant of order 3.
Rule : The three diagonals sloping down to the
right give the three positive terms, and the three
diagonals sloping down to the left give the three
negative terms.

        

         

1 1 1

2 2 2

3 3 3

a b c

a b c

a b c
1 2 3 1 2 3 1 2 3a b c b c a c a b  

   3 2 1 3 2 1 3 2 1a b c b c a c a b  

Some Operations
The first, second and third rows of a determinant

are denoted by 1 2,R R  and 3R  respectively, and

the first, second and third columns by
1 2,C C and

3C , respectively..

Properties
 The interchange of its ith row and jth row is

 denoted by 



Properties of inverse matrix



 





















 





Sarrus Rule for Expansion

Some Operations

Properties


i jR R .
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 The interchange of ith column and  jth column is

 denoted by i jC C .

 The addition of m-times the elements of  jth row
 of the corresponding elements of ith  row is

 denoted by i i jR R mR  .

  The addition of m-times the elements of  jth

  column to the corresponding elements of ith

  column is denoted by i i jC C mC  .

  The addition of m-times the elements of  jth row
  to n-times the elements of ith row is denoted by

i i jR nR mR  .

Applications
(1)Use of determinant in coordinate

geometry
Area of Triangle

The area of a triangle, whose vertices are

1 1 2 2( , ), ( , )x y x y , and 3 3( , )x y ,is

                   

1 1

2 2

3 3

1
1

1
2

1

x y

x y

x y

(2)Condition of concurrency of three lines
Three lines are said to be concurrent if they pass
through a common point, i.e., they meet at a point.

Let 1 1 1 0a x b y c   ; 2 2 2 0a x b y c  

3 3 3 0a x b y c   ;  be three  concurrent lines,

then                 

1 1 1

2 2 2

3 3 3

0

a b c

a b c

a b c



Condition for General Second Degree Equation
in x and y represent pair of straight lines. The
general second degree equation

2 22 2 2 0ax hxy by gx fy c     

represents pair of straight lines if

                   
0

a h g

h b f

g f c



(3) Determinant of characteristic roots and
vector
If    is a characteristic root and X is a

corresponding characteristic vector of a matrix  A,
then we have

       AX X IX    or ( ) 0A I X 

Since 0X  , we deduce that the matrix ( )A I

is singular so that its determinant

              | | 0A I 

Thus, every characteristic root   of a matrix A is

root of its characteristic equation

       | | 0A I      ... (1)

Conversely, if   is any root of the characteristic

equation [Eq. (1)], then the matrix equation

( ) 0A I X   necessarily possesses a nonzero

solution X so that there exists a vector 0X   such

that AX IX X   .

Thus, every root of the characteristic equation of
a matrix is a characteristic root of the matrix.
If A is n-rowed, then the characteristic equation

18





  



Applications
(1)Use of determinant in coordinate

geometry
Area of Triangle

(2)Condition of concurrency of three lines

(3) Determinant of characteristic roots and
vector

Cyclic order:

0A I   is of nth degree so that every n-rowed

square matrix possesses n characteristic roots,
which, of course, may not all be distinct.

2

2

2

1

( , , ) 1

1

a a

f a b c b b

c c


 then

( , , ) ( , , ) ( , , ) 0f a a c f a b b f c b c  

then , ,a b b c c a    are factors of determinant.

2 2 2 ( )( )( )( )

a b c

a b c a b b c c a ab bc ca

bc ca ab

     

3 3 3

1 1 1

( )( )( )( )a b c a b b c c a a b c

a b c

     
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1. While expanding the determinant instead of

multiplying by ( 1)i j , we can multiply by 1  or

-1 according as i j  is

(a) Odd (b) Even or odd
(c) Odd or even (d) Even

2. When the determinant 

2

2 2

2

cos 2 sin cos 4

sin cos 2 cos

cos 4 cos cos 2

x x x

x x x

x x x
 is

expand in powers of sin ,x  then the constant term

in that expression is
(a) 2 (b) 1 (c) -1 (d) 0

3. The determinant 

sin cos

sin 1

cos 1

x

x

x

 





 
 is

(a) Independent of 

(b) Independent of both   and x

(c) Independent of x only
(d) None of these

4. If 

5. If 

6. The minors of -4 and 9 and the cofactor of -4 and

9 in the determinant 

a h g

h b f

g f c

  , then the cofactor 21A  is

(a) ( )hc fg  (b) fg hc

(c) fg hc (d) hc fg

1, , ,a b m c d n
m b

x y e x y e
n d

   

2 3, ,
a m a b

c n c d
     the values of x and y are

respectively

(a) 2 1/   and 3 1/  (b) 1 3/   and 2 3/ 

(c) 1 3/   and 2 3/  (d) 
1

3e



  and  
2

3e





1 2 3

4 5 6

7 8 9

 

  


 are

respectively
(a) 42, 3 ; 42; 3 (b) 42, 3 ; -42, 3
(c) 42, 3; -42, -3 (d) -42, -3 ; 42,-3

7. If  
2

1 0

1 ,

a

f x ax a

ax ax a



   then    2f x f x

equals

(a)  2 3x a x (b)  2 3a a x

(c)  2 3ax a x (d)  2 3ax x a

8. If  
1 1 1

1 1 ,

1 1

i

i

f e

e












 

 then

(a)    
2 2

0

2

2f d f d

 



   



  (b) 0
2

f
 

 
 

(c)  f   is purely imaginary

(d) None of these

9. If 

2 2 3

2 2 3

2 2 3

1

1 ,

1

a a bc a a

b b ca k b b

c c ab c c


 then k equal to

(a) 1 (b) -2 (c) -1 (d) 2
10. The value of the determinant

1 4 7 10

4 7 10 13

7 10 13 16

2 3 1 0

 is equal to

(a) 10 (b) 22 (c) 0 (d) None of these

11. If a determinant of order 3 3  is formed by using

the numbers 1 or -1, then the minimum value of
the determinant is
(a) -8 (b) -4 (c) 0 (d) -2

12. Let the determinant of a 3 3  matrix A be 6 and B

is a matrix defined by 25 ,B A  then det B is equal

to
(a) 100 (b) 80 (c) 180 (d) None of these

13.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.
3 4 2 8

3 4 3 3

log 512 log 3 log 3 log 3

log 8 log 9 log 4 log 4
 

(a) 7 (b) 10 (c) 13 (d) 17



15.

62

Mathematics Times October 18

14. If 

18

14.

15.

2

2

cos

sin sec

tan 1 2

xx x e

x x x

x
 then the value of

/ 2

/2
( )f x dx



  is equal to

(a) 2 (b) 1
(c) 3 (d) None of these

If A is a 3 3  non-singular matrix, then 
1A adjA

is

(a) A (b) 
1

A


(c) 1 (d) 
2

A

1. b 2. c 3. a 4. b 5. d
6. d 7. c 8. a 9. a 10. c
11. b 12. d 13. b 14. d 15. a

1. 2. 3. 4. 5.
6. 7. 8. 9. 10.
11. 12. 13. 14. 15.

1.Sol: While expanding the determinant instead of

multiplying by ( 1) ,i j  we can multiply by +1 or

-1 according as ( )i j  is even or odd.

2.Sol: Let   

3.Sol: Given 

4.Sol: We have, 

5.Sol: Given 

     
     
     

2

2 2

2

cos 2 sin cos 4

sin cos 2 cos

cos 4 cos cos 2

x x x

f x x x x

x x x



We know, to find constant term of any polynomial

function, we need to put 0x 

i.e., sin 0 0x x  

 
1 0 1

0 0 1 1

1 1 1

f 

        
1 1 0 1 0 1

1 0 1
1 1 1 1 1 1

    1 

sin cos

sin 1

cos 1

x

x

x

 





   

1 sin 1 sin
sin cos

1 cos cos 1

x x
x

x x

 
 

 

   
  

     2 1 sin sin cos cos sin cosx x x x             

 3 2 2sin cos 0x x x        3x 

a h g

h b f

g f c

 

Now minor of 21a  is 21

h g
M hc fg

f c
  

2 1
21 ( 1)A     21 ( )M hc fg fg hc    

a b mx y e  and c d nx y e

log loga x b y m    and

log logc x d y n 

Using Cramer’s rule, we have

1 2

3 3

log ; logx y
 

 
 

1

3x e



   and 

2

3y e

6.Sol: Minor of -4 is 

7.Sol: Applying 

1.Sol:

2.Sol:

3.Sol:

4.Sol:

5.Sol:

6.Sol:

7.Sol:





2 3
42,

8 9


 

likewise minor of 9 is 
1 2

3
4 5

 
 

 

and cofactor of -4 is    
2 1

1 42 42


  

and that of 9 is    
3 3

1 3 3.


   

2 2 1R R xR   and 3 2 ,R xR

We get    
1 0

0 1

0 0

a

f x a x

a x



  



     
2

a a x 

       
2 2

2 2f x f x a a x a a x     

            2 3ax a x 
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8.Sol: On operating 1 2 1R R R   and

3 2 3R R R 

 
0 1 2

1 1

0 1 1

i

i

i i

e

f e

e e





 


 

 



   

                1 1 1 2 1i i ie e e            

           2 1 cos 

Now      f f f      is an even function.

9.Sol: Given 

10.Sol: Given 

11.Sol: Let 

which has minimum value of -4.

12.Sol: Given 

13.Sol: Given 

2 2 3

2 2 3

2 2 3

1

1

1

a a bc a a

b b ca k b b

c c ab c c



Let 

2

2

2

a a bc

b b ca

c c ab

 

1 1 2 2;aR R bR R   and 3 3cR R

we get   

2 3

2 3

2 3

1
a a abc

b b abc
abc

c c abc

 

 
2 3

2 3

2 3

1

1

1

a a
abc

b b
abc

c c


  

2 3

2 3

2 3

1

1

1

a a

b b

c c

  

1k 

1 4 7 10

4 7 10 13

7 10 13 16

2 3 1 0

2 1 2R R R   and 3 2 3R R R 

1 4 7 10

3 3 3 3

3 3 3 3

2 3 1 0





0

11 12 13

21 22 23

31 23 33

a a a

D a a a

a a a



Applying 
1312

2 2 1 3 1

11 11

,
aa

C C C C C
a a

   , we get

11

1312
21 22 21 23 21

11 11

1312
31 32 31 33 31

11 11

0 0a

aa
D a a a a a

a a

aa
a a a a a

a a

   
      

   

   
      

   

6A   also given

25B A  
235 A   125 36  4500

512 3 3 3
3 4 2 8

8 9 4 4
3 4 3 3

log log log log

log log log log


512 9 8 3 4 3 4 3
3 4 3 4 3 2 3 8log log log log log log log log        

3 2
9 2 10

2 3

  
    

  

14.Sol: Let 

2

2

cos

( ) sin sec

tan 1 2

xx x e

f x x x x

x



 
   

 

2

2

cos

sin sec

tan 1 2

xx x e

f x x x x f x

x

 

    



Now  
2

2

0f x dx








15.Sol: 



8.Sol:

9.Sol:

10.Sol:

11.Sol:

12.Sol:

13.Sol:

14.Sol:

15.Sol:
1 1A adjA A adjA   

1 2
A A


 A

 11A A
 




